Fru-6-P→葡萄糖胺-6-P→NacG-6-P→NAcG-1-P→UDP-NacG (三)CMP-唾液酸
UDP-NAcG→N-乙酰神经氨酸-9-磷酸→N-乙酰神经氨酸(唾液酸)→CMP-唾液酸
第八节 糖代谢的调节
一、酵解的调节
三个酶。通过能量与生物合成的原料调节。 (一)磷酸果糖激酶是限速酶。其调节物有:
1. ATP是底物,也是负调节物,可被AMP逆转。当细胞中能荷(ATP/AMP)高时,酶对6-磷酸果糖的亲和力降低。 2. 柠檬酸是三羧酸循环的第一个产物,其浓度增加表示生物合成的前体过剩,可加强ATP的抑制作用。 3. 氢离子也有抑制作用,可防止乳酸过多引起血液酸中毒。
4. 2,6-二磷酸果糖是别构活化剂,可增加对底物的亲和力。由磷酸果糖激酶2合成,在果糖二磷酸酶催化下水解成6-磷酸果糖。这两个酶称为前后酶或双功能酶,组成相同,其丝氨酸磷酸化后起磷酸酶作用,去磷酸则起激酶作用。
(二)己糖激酶控制酵解的入口,因为6-磷酸葡萄糖的用处较多,参加磷酸戊糖途径、糖醛酸途径和糖原合成等,所以不是关键酶,由产物反馈抑制,磷酸果糖激酶活性降低则6-磷酸葡萄糖积累,抑制己糖激酶活性。 (三)丙酮酸激酶控制出口。
1. 1,6-二磷酸果糖起活化作用,与磷酸果糖激酶协调,加速酵解。 2. 丙酮酸转氨生成丙氨酸,别构抑制,表示生物合成过剩。
3. 其三种同工酶调节不同,肝脏的L型同工酶受ATP别构抑制,且有可逆磷酸化。血糖低时被级联放大系统磷酸化,降低活性,而肌肉中的M型不受磷酸化调节,血糖低时也可酵解供能。A型介于两者之间。
二、三羧酸循环的调控
由三个酶调控:柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶。第一步是限速步骤,受底物浓度影响和ATP的抑制。ATP还抑制异柠檬酸脱氢酶,ADP起激活作用。NADH对三种酶都抑制。琥珀酰辅酶A与乙酰辅酶A竞争,抑制柠檬酸合成酶和α-酮戊二酸脱氢酶。草酰乙酸浓度低,是影响三羧酸循环速度的重要因素。
三、酵解、三羧酸循环与氧化磷酸化
给高速酵解的细胞氧气,则葡萄糖消耗减少,乳酸堆积终止,称为巴斯德效应。原因是有氧时丙酮酸氧化,产生大量ATP,抑制酵解和三羧酸循环。三者都由能荷控制。
四、糖异生和酵解的协调
(一)高浓度的6-磷酸葡萄糖抑制己糖激酶,促进异生。
(二)酵解和异生的控制点是6-磷酸果糖与1,6-二磷酸果糖的转化。ATP和柠檬酸促进异生,抑制酵解。2,6-二磷酸果糖相反,是重要调节物。
(三)丙酮酸与磷酸烯醇式丙酮酸的转化,丙酮酸羧化酶受乙酰辅酶A激活,ADP抑制;丙酮酸激酶被ATP、NADH和丙氨酸抑制。 (四)无效循环:由不同酶催化的两个相反代谢反应条件不同,一个需要ATP参加,另一个进行水解,结果只是消耗能量,反应物不变,称为无效循环。可用于产热。
五、糖原代谢的调节
其分解与合成主要由糖原磷酸化酶和糖原合成酶控制。二者都受可逆磷酸化调节,效果相反。激素通过cAMP促进磷酸化作用,使磷酸化酶成为a型(有活性),合成酶变成b型(无活性)。合成酶由蛋白激酶磷酸化。
六、神经和激素对血糖的调节
血糖浓度一般在80-120mg/100ml,称为葡萄糖耐量。肾糖阈为160-180,血糖过多则从尿排出。血糖低于70或过度兴奋可刺激延脑第四脑室“糖中枢”,引起肝糖原分解。下丘脑可分泌皮质释放因子,作用于肾上腺皮质,升高血糖。影响糖代谢的激素有: 1.胰岛素:由胰岛β细胞分泌,促进糖原合成酶活性,诱导葡萄糖激酶合成,加强磷酸果糖激酶作用。低血糖效应。
2.肾上腺素和胰高血糖素:通过cAMP激活糖原磷酸化酶,诱导肝中磷酸烯醇式丙酮酸羧化激酶和果糖二磷酸酶的合成,促进异生,升高血糖。
3.生长激素:抗胰岛素,抑制糖原分解和葡萄糖氧化。促肾上腺皮质激素可阻碍肌糖原氧化,促进肝糖原合成。 4.甲状腺素:促进糖的异生和糖原分解,增加小肠对葡萄糖的吸收,升高血糖。 以上激素都是水溶性激素,通过cAMP起作用。
第九节 光合作用(课本27章)
1771年J. Priestly发现植物能“净化被燃烧的蜡烛所恶化的空气”。后来普里斯特利因同情法国革命而被迫离开英国。拉瓦锡发
现了氧化现象和物质不灭定律,打破了燃素假说;荷兰人发现植物在阳光下可以净化空气,在黑暗中会恶化空气。瑞士人根据物质不灭定律证明光合作用中有水参加;德国人罗伯特f迈耶发现能量守恒定律,指出光合作用是光能转化为化学能的过程。每年光合作用可转化1017千卡自由能,相当于同化1010吨碳。
一、概述
(一)光合细胞捕获光能并转化为化学能的过程,即利用光能将CO2转化为有机物的过程称为光合作用。绿色植物以水为电子供体,放出氧气,光合细菌以H2S等为供体,不放出氧气。
(二)光合作用分为两个阶段,第一阶段是光反应,由光合色素将光能转变为化学能,并形成ATP和NADPH。第二阶段是暗反应,用ATP和NADPH将CO2还原为糖或其他有机物,不需要光。
(三)叶绿体是光合作用的器官,有外膜和内膜,膜上有光合色素。膜包着基质,其中有暗反应需要的酶。细菌无叶绿体。
二、光反应
(一)光系统
1.光系统I:700nm激活,产生NADPH 2. 光系统II:680nm激活,产生O2 (二)过程:分为两个阶段
1. P680吸收光能,产生强氧化剂,从水中夺取电子,通过电子传递链传给质蓝素(一种铜蛋白),同时产生质子梯度。 2. 电子从质蓝素传给P700,再吸收光能,将电子传递给NADP+,并提高质子梯度。
(三)光合磷酸化:依赖质子梯度,由叶绿体ATP合成酶(CFO-CF1)合成ATP。根据电子传递方式可分为循环式和非循环式。当NADP+不足时,采用非循环式,不放氧气。
三、暗反应
(一)三碳途径:生成三碳中间物
1. 固定:1,5-二磷酸核酮糖在二磷酸核酮糖羧化酶(Rubisco)催化下与CO2生成2-羧基-3-酮-1,5-二磷酸核糖醇,然后加水分解为2个3-磷酸甘油酸。Rubisco占叶绿体总蛋白的60%,是自然界中含量最丰富的酶。 2. 生成葡萄糖:与异生相似,但3-磷酸甘油醛脱氢酶在叶绿体中以NADPH为辅基。
3. 二磷酸核酮糖的再生:一系列转酮和转醛反应,与戊糖途径类似。由6-磷酸果糖和3-磷酸甘油醛开始,经四碳、七碳,生成5-
磷酸核酮糖,在磷酸核酮糖激酶催化下生成1,5-二磷酸核酮糖。 4. 总反应为:
6CO2+12H2O+18ATP+12NADPH+12H+ = C6H12O6+18ADP+18Pi+12NADP+ 此过程需8个光子,按波长600nm计算,能量为381千卡,葡萄糖氧化为可放能114千卡,所以能量利用率约为30%。 (二)调控:二磷酸核酮糖羧化酶是别构限速酶,光照射叶绿体产生的三个因素可刺激酶活: 1. 光照使质子外流,基质内pH升高,增加酶活。
2. 质子转运伴随着氯和镁离子的转移,镁离子浓度升高也刺激酶活。 3. 光照增加NADPH,提高反应速度。
4. 光系统I中的铁氧还蛋白可还原硫氧还蛋白,后者可协调光和暗反应,激活暗反应中的一些酶。可加快100倍。 (三)光呼吸
二磷酸核酮糖羧化酶还催化二磷酸核酮糖氧化生成3-磷酸甘油酸和磷酸乙醇酸,前者可参加糖的合成,后者通过乙醛酸途径放出CO2。氧化和羧化在同一位点,彼此竞争,羧化活性高4倍。光呼吸浪费能量,希望通过基因工程改造除去。
光呼吸随温度升高而加快的速度比羧化更快,所以高温时光合作用效率降低。四碳植物CO2含量高,可抑制光呼吸,所以更适宜在高温下生长。 (四)四碳途径
存在于热带和亚热带植物中,利用CO2的效率特别高。其叶肉细胞细胞质中碳酸酐酶催化CO2形成碳酸氢根,再由磷酸烯醇式丙酮酸羧化酶形成草酰乙酸,被NADPH还原成苹果酸,转移到维管束细胞,脱羧生成丙酮酸和CO2。CO2进入三碳循环,丙酮酸返回叶肉细胞,被丙酮酸磷酸二激酶催化形成磷酸烯醇式丙酮酸。因此每固定一个CO2四碳途径多消耗2个ATP,共5个。热带植物常关闭气孔,CO2和O2都不易进入,通过四碳途径可保持二磷酸核酮糖的最大活力,降低光呼吸,所以四碳植物生长快,是高产植物。
本 章 名 词 解 释
酵解(glycolysis):由10步酶促反应组成的糖分解代谢途径。通过该途径,一分子葡萄糖转化为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。
发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮酸转化为乙醇和CO2。 巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。
底物水平磷酸化(substrate phosphorlation):ADP或某些其它的核苷-5′—二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。
柠檬酸循环(citric acid cycle):也称为三羧酸循环(TAC),Krebs循环。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。
回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。 乙醛酸循环(glyoxylate cycle):是某些植物,细菌和酵母中柠檬酸循环的修改形式,通过该循环可以收乙乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤
戊糖磷酸途径(pentose phosphare parhway):那称为磷酸已糖支路。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解的两用人才个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。 糖醛酸途径(glucuronate pathway):从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸的动物体内,才可以通过该途径合成维生素C。
无效循环(futile cycle):也称为底物循环。一对酶催化的循环反应,该循环通过ATP的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+P i反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。 磷酸解(phosphorolysis)作用::通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。实际上引入了一个磷酰基。
半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,是由于缺乏1-磷酸半乳糖尿苷酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。
尾部生长(tailward growth):一种聚合反应机理经过私有化的单体的头部结合到聚合的尾部,连接到聚合物尾部的单体的尾部又生成了接下一个单体的受体。
糖异生作用(gluconenogenesis):由简单的非糖前体转变为糖的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三
个反应。