3.共价调节:E1上的特殊丝氨酸被磷酸化时无活性,水解后恢复活性。丙酮酸抑制磷酸化作用,钙和胰岛素增加去磷酸化作用,ATP、乙酰辅酶A、NADH增加磷酸化作用。
二、三羧酸循环的途径:8步。曾经怀疑第一个组分是其他三羧酸,故名三羧酸循环。也叫Krebs循环。 1.辅酶A与草酰乙酸缩合,生成柠檬酸 由柠檬酸缩合酶催化,高能硫酯键水解推动反应进行。受ATP、NADH、琥珀酰辅酶A和长链脂肪酰辅酶A抑制。ATP可增加对乙酰辅酶A的Km。氟乙酰辅酶A可形成氟柠檬酸,抑制下一步反应的酶,称为致死合成,可用于杀虫剂。 2.柠檬酸异构化,生成异柠檬酸 由顺乌头酸酶催化,先脱水,再加水。是含铁的非铁卟啉蛋白。需铁及巯基化合物(谷胱甘肽或Cys等)维持其活性。 3.氧化脱羧,生成α-酮戊二酸 第一次氧化,由异柠檬酸脱氢酶催化,生成NADH或NADPH。中间物是草酰琥珀酸。是第二个调节酶,能量高时抑制。生理条件下不可逆,是限速步骤。细胞质中有另一种异柠檬酸脱氢酶,需NADPH,不是别构酶。其反应可逆,与NADPH还原当量有关。 4.氧化脱羧,生成琥珀酰辅酶A 第二次氧化脱羧,由α-酮戊二酸脱氢酶体系催化,生成NADH。其中E1为α-酮戊二酸脱氢酶,E2为琥珀酰转移酶,E3与丙酮酸脱氢酶体系相同。机制类似,但无共价调节。 5.分解,生成琥珀酸和GTP 是唯一一个底物水平磷酸化,由琥珀酰辅酶A合成酶(琥珀酰硫激酶)催化。GTP可用于蛋白质合成,也可生成ATP。需镁离子。 6.脱氢,生成延胡索酸 第三步氧化还原反应,由琥珀酸脱氢酶催化,生成FADH2。琥珀酸脱氢酶位于线粒体内膜,直接与呼吸链相连。FADH2不与酶解离,电子直接转移到酶的铁原子上。 7.水化,生成苹果酸 由延胡索酸酶催化,是反式加成,只形成L-苹果酸。 8.脱氢,生成草酰乙酸 第四次氧化还原,由L-苹果酸脱氢酶催化,生成NADH。反应在能量上不利,由于草酰乙酸的消耗而进行。
三、总 结(***)
1.能量情况:每个循环产生3个NADH,1个FADH2,1个GTP,共12个ATP。加上酵解和丙酮酸脱氢,每个葡萄糖有氧氧化共产生36-38个ATP。 2.不对称反应
四、回补反应
三羧酸循环的中间物是许多生物合成的前体,如草酰乙酸和α-酮戊二酸可用于合成天冬氨酸和谷氨酸,卟啉的碳原子来自琥珀酰辅酶A。这样会降低草酰乙酸浓度,抑制三羧酸循环。所以必需补充草酰乙酸。
1.丙酮酸羧化:与ATP、水和CO2在丙酮酸羧化酶作用下生成草酰乙酸。需要镁离子和生物素。是调节酶,平时活性低,乙酰辅酶A可促进其活性。
2.PEP+ CO2+GDP=草酰乙酸+GTP 由磷酸烯醇式丙酮酸羧化激酶催化,需Mn2+,在脑和心脏中有这个反应。 3.由天冬氨酸转氨生成草酰乙酸,谷氨酸生成α-酮戊二酸,异亮氨酸、缬氨酸、苏氨酸和甲硫氨酸生成琥珀酰辅酶A。
五、乙醛酸循环
六、许多植物和微生物可将脂肪转化为糖,是通过一个类似三羧酸循环的乙醛酸循环,将2个乙酰辅酶A合成一个琥珀酸。此循环生成异柠檬酸后经异柠檬酸裂解酶催化,生成琥珀酸和乙醛酸,乙醛酸与另一个乙酰辅酶A缩合产生苹果酸,由苹果酸合成酶催化。然后与三羧酸循环相同。
第四节 磷酸戊糖途径 一、作用在细胞质中进行
(一)产生NADP,为生物合成提供还原力,如脂肪酸、固醇等。NADPH还可使谷胱甘肽维持还原态,维持红细胞还原性。 (二)产生磷酸戊糖,参加核酸代谢
(三)是植物光合作用中从CO2合成葡萄糖的部分途径
二、途径
(一)氧化阶段:生成5-磷酸核酮糖,并产生NADPH
1. 葡萄糖-6-磷酸在葡萄糖-6-磷酸脱氢酶作用下生成6-磷酸葡萄糖酸内酯,并产生NADPH。是此途径的调控酶,催化不可逆反应,受NADPH反馈抑制。
2. 被6-磷酸葡萄糖酸δ内酯酶水解,生成6-磷酸葡萄糖酸。
3. 在6-磷酸葡萄糖酸脱氢酶作用下脱氢、脱羧,生成5-磷酸核酮糖,并产生NADPH。 (二)分子重排,产生6-磷酸果糖和3-磷酸甘油醛
1. 异构化,由磷酸戊糖异构酶催化为5-磷酸核糖,由磷酸戊糖差向酶催化为5-磷酸木酮糖。
2. 转酮反应。5-磷酸木酮糖和5-磷酸核糖在转酮酶催化下生成3-磷酸甘油醛和7-磷酸景天庚酮糖。此酶也叫转酮醇酶,需TPP和镁离子,生成羟乙醛基TPP负离子中间物。
3. 转醛反应。7-景天庚酮糖与3-磷酸甘油醛在转醛酶催化下生成4-磷酸赤藓糖和6-磷酸果糖,反应中酶分子的赖氨酸氨基与酮糖底物生成西弗碱中间物。
4. 转酮反应。4-磷酸赤藓糖与5-磷酸木酮糖在转酮酶催化下生成6-磷酸果糖和3-磷酸甘油醛。 5. 总反应为:
3核糖-5-磷酸=2果糖-6-磷酸+甘油醛-3-磷酸 如细胞中磷酸核糖过多,可以逆转反应,进入酵解。
第五节 糖醛酸途径 一、意义
(一)解毒:肝脏中的糖醛酸有解毒作用,可与含羟基、巯基、羧基、氨基等基团的异物或药物结合,生成水溶性加成物,使其溶于水而排出。
(二)生物合成:UDP-糖醛酸可用于合成粘多糖,如肝素、透明质酸、硫酸软骨素等。 (三)合成维生素C,但灵长类不能。 (四)形成木酮糖,可与磷酸戊糖途径相连。
二、过程
(一)6-磷酸葡萄糖转化为UDP-葡萄糖,再由NAD连接的脱氢酶催化,形成UDP-葡萄糖醛酸。
(二)合成维生素C:UDP-葡萄糖醛酸经水解、还原、脱水,形成L-古洛糖酸内酯,再经L-古洛糖酸内酯氧化酶氧化成抗坏血酸。灵长类动物、豚鼠、印度果蝙蝠不能合成。 (三)通过C5差向酶,形成UDP-艾杜糖醛酸。
(四)L-古洛糖酸脱氢,再脱羧,生成L-木酮糖,然后与NADPH加氢生成木糖醇,还原NAD+生成木酮糖,与磷酸戊糖途径相连。
第六节 糖的异生 一、意义
(一)将非糖物质转变为糖,以维持血糖恒定,满足组织对葡萄糖的需要。人体可供利用的糖仅150克,而且储量最大的肌糖原只供本身消耗,肝糖原不到12小时即全部耗尽,这时必需通过异生补充血糖,以满足脑和红细胞等对葡萄糖的需要。 (二)将肌肉酵解产生的乳酸合成葡萄糖,供肌肉重新利用,即乳酸循环。
二、途径
基本是酵解的逆转,但有三步不同: (一)由丙酮酸生成磷酸烯醇式丙酮酸
1. 丙酮酸在丙酮酸羧化酶作用下生成草酰乙酸 此酶存在于肝和肾脏的线粒体中,需生物素和镁离子。镁离子与ATP结合,提供能量,生成羧基生物素,再转给丙酮酸,形成草酰乙酸。此酶是别构酶,受乙酰辅酶A调控,缺乏乙酰辅酶A时无活性。ATP含量高可促进羧化。此反应联系三羧酸循环和糖异生,乙酰辅酶A可促进草酰乙酸合成,如ATP含量高则三羧酸循环被抑制,异生加快。
2. 草酰乙酸过膜:异生在细胞质中进行,草酰乙酸要转化为苹果酸才能出线粒体膜,在细胞质中再氧化成草酰乙酸。这是由苹果酸脱氢酶催化的,同时带出一个NADH。因为线粒体中还原辅酶多,NAD+/NADH在细胞质中是500-700,线粒体中是5-8。 3. 磷酸烯醇式丙酮酸羧化激酶催化草酰乙酸生成PEP。反应需GTP提供磷酰基,速度受草酰乙酸浓度和激素调节。胰高血糖素、肾上腺素、糖皮质激素可增加肝脏中的酶量,胰岛素相反。 总反应为:
丙酮酸+ATP+GTP+H2O=PEP+ADP+GDP+Pi+H+ 反应消耗2个高能键,比酵解更易进行。
(二)果糖二磷酸酶催化果糖-1,6-二磷酸水解为果糖-6-磷酸。需镁离子。是别构酶,AMP强烈抑制酶活,平时抑制酶活50%。果糖2,6-二磷酸也抑制,ATP、柠檬酸和3-磷酸甘油酸可激活。
(三)6-磷酸葡萄糖水解,生成葡萄糖。由葡萄糖-6-磷酸酶催化,需镁离子。此酶存在于肝脏,脑和肌肉没有。 总反应为:
2丙酮酸+4ATP+2GTP+2NADH+2H++4H2O=葡萄糖+NAD+ +4ADP+2GDP+6Pi 三、糖异生的前体
(一)三羧酸循环的中间物,如柠檬酸、琥珀酸、苹果酸等。
(二)大多数氨基酸是生糖氨基酸,如丙氨酸、丝氨酸、半胱氨酸等,可转变为三羧酸循环的中间物,参加异生。 (三)肌肉产生的乳酸,可通过乳酸循环(Cori循环)生成葡萄糖 。
反刍动物胃中的细菌将纤维素分解为乙酸、丙酸、丁酸等,奇数碳脂肪酸可转变为琥珀酰辅酶A,参加异生。
第七节 糖原的合成与分解 一、分解代谢
(一)糖原磷酸化酶从非还原端水解α-1,4糖苷键,生成1-磷酸葡萄糖。到分支点前4个残基停止,生成极限糊精。可分解40%。有a,b两种形式,b为二聚体,磷酸化后生成有活性的a型四聚体。b也有一定活性,受AMP显著激活。
(二)去分支酶:有两个活性中心,一个是转移酶,将3个残基转移到另一条链,留下以α-1,6键相连的分支点。另一个活性中心起脱支酶作用,水解分支点残基,生成游离葡萄糖。
(三)磷酸葡萄糖变位酶:催化1-磷酸葡萄糖生成6-磷酸葡萄糖,经1,6-二磷酸葡萄糖中间物。
(四)肝脏、肾脏、小肠有葡萄糖6-磷酸酶,可水解生成葡萄糖,补充血糖。肌肉和脑没有,只能氧化供能。
二、合成:与分解不同
(一)在UDP-葡萄糖焦磷酸化酶作用下,1-磷酸葡萄糖生成UDP-葡萄糖,消耗一个UTP,生成焦磷酸
(二)糖原合成酶将UDP-葡萄糖的糖基加在糖原引物的非还原端葡萄糖的C4羟基上。引物至少要有4个糖基,由引发蛋白和糖原起始合成酶合成,将UDP-葡萄糖加在引发蛋白的酪氨酸羟基上。糖原合成酶a磷酸化后活性降低,称为b,其活性依赖别构效应物6-磷酸葡萄糖激活。
(三)分支酶合成支链。从至少11个残基的链上将非还原端7个残基转移到较内部的位置,形成1,6键分支。新的分支必需与原有糖链有4个残基的距离。分支可加快代谢速度,增加溶解度。
三、衍生糖的合成
(一)GDP-岩藻糖
Glc→Glc-6-P→Fru-6-P→Man-6-P→Man-1-P→GDP-Man→GDP-岩藻糖 (二)UDP-葡萄糖胺