市第届迎春杯决赛试题
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
北京市小学生第13届迎春杯决赛试题
一、填空题(每小题满分7分,共计42分) 1.计算:
= 。
2.如图,长方形ABCD的面积是1,M是AD边的中点,N在AB边上,且AN=BN。那么,阴影部分的面积等于 。
3.已知一个两位数除1477,余数是49。那么满足这样条件的所有两位数是 。
4.甲、乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。如果已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖 米。
5.如左下图,工地上堆放了180块砖,这个砖堆有两面靠墙。如果要把这个砖堆的表面涂满白色,那么,被涂上白色的砖共有 块。
6.如右上图的6条线分别连接着九个○,其中一个○里的数字是6。请你选九个连续自然数(包括6在内),填入○内,使每条线上各数的和都等于23。
二、填空题,(每小题满分8分,共24分)
1.在等式
中,□表示一个数,那么,□= 。
2.在桌面上,用6个边长为1的正三角形可以拼成一个边长为1的正六边形(如图)。如果在桌面上,要拼一个边长为6的正六边形,那么,需要边长为1的正三角形 个。
3.李大娘把养的鸡分别关在东、西两个院内。已知东院内养鸡40只,现在把西院养鸡数的卖给商店,卖给加工厂,再把剩下的鸡相加,其和恰好等于原来东、西两院养鸡总数的50%。原来东、西两院一共养鸡 只。
三、填空题(每小题满分8分,共32分)
1.有一串数:1,3,8,22,60,164,448,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是 。
2.在平面上有7个点,其中每3个点都不在同一条直线上。如果在这7个点之间连结18条线段,那么这些线段最多能构成 个三角形。
3.一个自然数除以19余9,除以23余7。那么这个自然数最小是 。
4.六个足球队进行单循环比赛,每两个队都要赛一场。如果踢平,每队各得1分,否则胜队得3分,负队得0分。现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同,已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得 分,最少可得 分。
四、解答题(请写出简要的解题过程。第一题满分12分,第二题满分10分,共22分)
1.甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。甲车原来每小时行多少千米
2.一小、二小两校春游的人数都是10的整数倍。如果两校都租用有14个座位的旅游车,则两校需租用这种车72辆;如果都租用19个座位的旅游车,则二小要比一小多租用这种车7辆。现在知道两校人员不合乘一辆车,且每辆车尽量坐满。问:两校参加这次春游的人数各是多少