.
2015年贵州省铜仁市中考数学试卷
一、选择题:(本大题共10个小题.每小题4分,共40分)本题每小题均有A、B、C、D四个备选答案.其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上. 1.(4分)(2015?铜仁市)2015的相反数是( ) A. 2 015 B. ﹣2015 C. D.
﹣
2.(4分)(2015?铜仁市)下列计算正确的是( ) A. a 2+a2=2a4 B.2 a2×a3=2a6 C. 3a﹣2a=1 D. (a2)3=a6 3.(4分)(2015?铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣时水面宽度AB为( )
x2,当水面离桥拱顶的高度DO是4m时,这
A. ﹣ 20m
B. 10m
C. 20m
D. ﹣10m
4.(4分)(2015?铜仁市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是
( ) A. 方 程有两个相等的实数根 B. 方程有两个不相等的实数根 C. 没有实数根 D.无 法确定 5.(4分)(2015?铜仁市)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是( ) A. B. C. D.
6.(4分)(2015?铜仁市)如果一个多边形的每一个外角都是60°,则这个多边形的边数是( ) A. 3 B. 4 C. 5 D. 6 7.(4分)(2015?铜仁市)在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为( ) A. 1 45,136 B. 140,136 C. 136,148 D. 136,145
'.
.
8.(4分)(2015?铜仁市)如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为( )
A. 3
B.
C. 5
D.
9.(4分)(2015?铜仁市)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A. 3 :4 B. 9:16 C. 9:1 D. 3:1 10.(4分)(2015?铜仁市)如图,在平面直角坐标系系中,直线y=k1x+2与x轴交于点A,与y轴交于点C,与反比例函数y=tan∠BOC=,则k2的值是( )
在第一象限内的图象交于点B,连接B0.若S△OBC=1,
A. ﹣ 3 B. 1 C. 2
二、填空题:(本题共8个小题,每小题4分分,共32分) 11.(4分)(2015?铜仁市)|﹣6.18|= .
12.(4分)(2015?铜仁市)定义一种新运算:x*y=
,如2*1=
D. 3
=2,则(4*2)*
(﹣1)= . 13.(4分)(2015?铜仁市)不等式5x﹣3<3x+5的最大整数解是 .
'.
.
14.(4分)(2015?铜仁市)已知点P(3,a)关于y轴的对称点为Q(b,2),则ab= . 15.(4分)(2015?铜仁市)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为 cm2. 16.(4分)(2015?铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 . 17.(4分)(2015?铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为 .
18.(4分)(2015?铜仁市)请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)= .
二、解答题:(本题共4个小题,第19题每小题20分,第20、21、22题每小题20分,共40分,要有解题的主要过程) 19.(20分)(2015?铜仁市)(1)﹣(2)先化简(
+
)×
÷|﹣2
×sin45°|+(﹣)1÷(﹣14×)
﹣
6
,然后选择一个你喜欢的数代入求值.
20.(10分)(2015?铜仁市)为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
'.
.
(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图. (2)求这次调查参加体育锻炼时间为1.5小时的人数. (3)这次调查参加体育锻炼时间的中位数是多少? 21.(10分)(2015?铜仁市)已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD. 求证:AD=CE.
22.(2015?铜仁市)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继 续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(
≈1.732)
四、解答题(共1小题,满分12分) 23.(12分)(2015?铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.
(1)求甲、乙两种货车每辆车可装多少件帐蓬?
(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?
五、解答题(共1小题,满分12分)
'.
.
24.(12分)(2015?铜仁市)如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E. (1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
六、解答题 25.(14分)(2015?铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标); (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从 点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
'.