1.Éè0?a?b£¬Ö¤Ã÷²»µÈʽ a2£®É躯Êýf(x)?x2?n?1bn?an??bn?1n(b?a)(n?2,3,L)¡£
?20f(x)dx£¬Çóf(x)ÔÚÇø¼ä[0,2]ÉϵÄ×î´óÖµÓë×îСֵ¡£
1???xsin,x?03. Éèf(x)??£¬ £¨?ΪʵÊý£© x?x?0?0, ÊÔÎÊ?ÔÚʲô·¶Î§Ê±, £¨1£©f(x)ÔÚµãx?0Á¬Ðø£» £¨2£©f(x)ÔÚµãx?0¿Éµ¼¡£ 4£®Èôº¯Êýf(x)?
?x0(x?t)f(t)dt?ex£¬Çóf(x)¡£
2006ÄêÕã½Ê¡ÆÕͨ¸ßУ¡°×¨Éý±¾¡±Áª¿¼
¡¶¸ßµÈÊýѧ£¨¶þ£©¡·ÊÔ¾í£¨A£©²Î¿¼´ð°¸¼°ÆÀ·Ö±ê×¼
Ò»¡¢Ìî¿ÕÌâ
?sin4x?e?3ax?1,x?0?1. Èô f(x)?? ÔÚx?0Á¬Ðø£¬Ôò x?ax?0? a? 1 . ?x?1?t22. ÇúÏß?ÔÚt?2´¦µÄÇÐÏß·½³ÌΪ y?3x?7. 3y?t?3. É躯Êýy?(2x?1)2sinx£¬ÔòÆäµ¼ÊýΪ y??(2x?1)sinx[cosxln(2x?1)?2sinx]. 2x?14.
??2(1?xcosx)dx£½ 4 .
5. Éèy?cos(sinx)£¬Ôòdy? ?cosxsin(sinx)dx. 6. ÇúÏßy?lnxÓëÖ±Ïßx?1£¬x?3¼°xÖáËùΧ³ÉµÄͼÐÎÈÆxÖáÐýתһÖÜ£¬ËùµÃÐýתÌå
Ìå»ýΪ ?(3ln3?2).
31
2x7. ΢·Ö·½³Ì y???4y??5y?0µÄͨ½âΪ y?e(C1cosx?C2sinx).
8. Èô¼¶Êý
?n?n?1?13?1ÊÕÁ²£¬Ôò?µÄÈ¡Öµ·¶Î§ÊÇ ??2
3
¶þ¡¢Ñ¡ÔñÌâ
1¡¢B 2¡¢A 3¡¢B 4¡¢C 5¡¢D
Èý¡¢¼ÆËãÌâ
2.
?¼ÆË㼫ÏÞ limx?0x0x0tantdtx2.
?½â£º limx?0tantdtx2£½limtanx £¨5·Ö£©
x?02x £½
1 £¨6·Ö£© 22£®¼ÆË㺯Êý y?x21?xµÄµ¼Êý y?. 1?x½â1£º Á½±ßÈ¡¶ÔÊý£¬µÃ lny?2lnx? Á½±ßÇóµ¼Êý
11ln(1?x)?ln(1?x) £¨1·Ö£© 22y?211??? £¨4·Ö£© yx2(1?x)2(1?x)1??2? 2??x1?x? y??y? £½x21?x?21? £¨6·Ö£© ??2?1?x?x1?x?lnx21?x1?x½â2£º ÓÉÓÚy?e?e12lnx?[ln(1?x)?ln(1?x)]2£¬ËùÒÔ
y??e12lnx?[ln(1?x)?ln(1?x)]21???21?1???x2?1?x1?x?? £¨4·Ö£©
????32
£½x21?x?21???? £¨6·Ö£©
1?x?x1?x2?y3 ¼ÆËãÓÉÒþº¯Êý e?xlnyÈ·¶¨µÄº¯Êý y?f(x)µÄ΢·Ödy. ½â£º ·½³ÌÁ½±ß¹ØÓÚxÇóµ¼Êý£¬°Ñ y¿´³ÉxµÄº¯Êý. y?e?lny?yxy? £¨3·Ö£© y½âµÃ y??ylny £¨4·Ö£©
yey?xylnydx £¨6·Ö£© yye?xËùÒÔº¯Êýy?f(x)µÄ΢·Ö dy??5. ÅбðÕýÏÊý
?n?1nln(1?1)µÄÁ²É¢ÐÔ. n2½â1£º ÓÉÓÚln(1??1n111a?nln(1?)??)?£¬ËùÒÔn3 £¨3·Ö£© 2222nnnnn2ÒÑÖª¼¶Êý
?n?11n32(p??3?1)ÊÕÁ² £¨5·Ö£© 2ÓɱȽÏÅбð·¨Öª¼¶Êý
?n?1nln(1?1)ÊÕÁ². £¨6·Ö£© 2n11)ln(1?)n2?limn2£½1 £¨4·Ö£©
n??113n22n½â2£º È¡bn?1n?32£¬liman?limn??bn??nnln(1? ÒòΪ¼¶Êý
?1n?32ÊÕÁ² £¨5·Ö£©
n?1 ËùÒÔÔ¼¶Êý
?n?1nln(1?1)ÊÕÁ²¡£ £¨6·Ö£© n25. ¼ÆËã²»¶¨»ý·Ö
?dx
x(1?x)½â1£º
?dxd(x)£½2? £¨4·Ö£© 2x(1?x)1?(x)33
£½2arctan½â2£º Éè t?
x?C £¨6·Ö£©
x£¬Ôòx?t2£¬dx?2tdt£¬ÓÚÊÇ
?dx2tdt£½? £¨4·Ö£© 2t(1?t)x(1?x)dt?1?t2
=2arctant?C £¨5·Ö£©
=2 =2arctan?x?C £¨6·Ö£©
n2n6. ÇóÃݼ¶Êý
?3xn?0µÄÊÕÁ²°ë¾¶ÓëÊÕÁ²Çø¼ä.
un?13n?1x2(n?1)2½â£º µ± x?0ʱ£¬lim £¨2·Ö £© ?lim?3xn2nn??un??3xn1 ËùÒÔµ± 3x?1£¬¼´|x|? ʱ£¬Ãݼ¶Êý
32?3xnn?0?2nÊÕÁ²£»µ± 3x?1£¬¼´|x|?21ʱ£¬3Ãݼ¶Êý
?3nx2n·¢É¢£¬ËùÒÔÃݼ¶ÊýµÄÊÕÁ²°ë¾¶R?n?0?1 £¨3·Ö£© 31ÓÉÓÚ x??ʱ£¬¼¶Êý
3?3xnn?0?2n³ÉΪ
n?0?1 ·¢É¢¡£ £¨5·Ö£©
?Òò´ËÃݼ¶ÊýÊÕÁ²Çø¼äΪ (?11,) £¨6·Ö£© 3311. ¼ÆË㶨»ý·Ö
??0xsin2xdx
2½â£º ÓÉÓÚ¹«Ê½ sinx??21(1?cos2x)£¬ËùÒÔ 21? ?xsinxdx£½?x(1?cos2x)dx £¨2·Ö£©
0201?1?1? £½?(x?xcos2x)dx??xdx??xcos2xdx
202020x2?1? £½?xdsin2x £¨ 3·Ö£©
404?0 £½
?24?xsin2x?1???sin2xdx £¨5·Ö£© 040434
£½
?24?18cos2x?0
2 £½
?4 £¨6·Ö£©
¼ÆËã΢·Ö·½³Ì dyx(1?y212. )dx?y(1?x2)Âú×ã³õʼÌõ¼þ y(0)?1µÄÌؽâ. ½â£º ·ÖÀë±äÁ¿µÃ
ydy1?y2?xdx1?x2 £¨2·Ö£©
Á½±ß»ý·Ö
?ydy1?y2??xdx1?x2
ÓÚÊÇÓÐ1d(1?y2)1d(1?x22?1?y2?2?)1?x2 ¼´
12ln(1?y2)?12ln(1?x2)?12C £¨4·Ö£© »ò ln(1?y2)?ln(1?x2)?C
½«³õʼÌõ¼þy(0)?1´úÈëµÃ C?ln2 £¨5·Ö£© ËùÇóÌؽâÊÇ y2?2x2?1 £¨6·Ö£© 13. ¼ÆË㺯Êý y?sin(lnx)µÄ¶þ½×µ¼Êý y??.
½â£º y??cos(lnx)x £¨3·Ö£© y????sin(lnx)?cos(lnx)sin(lnx)?cos(lnx)x2??x2 £¨6·Ö£© 14. ½«º¯Êý y?lnxÕ¹³É(x?1)µÄÃݼ¶Êý²¢Ö¸³öÊÕÁ²Çø¼ä. ½â£º ÒòΪ y?lnx?ln[1?(x?1)] £¨1·Ö£©
¸ù¾ÝÃݼ¶ÊýÕ¹¿ªÊ½ ln(1?x)?x?x22?x3n3?L?(?1)n?1xn?L£¬?1?x?1ÓÚÊÇ
lnx?(x?1)?(x?1)2(n2?x?1)33?L?(?1)n?1(x?1)n?L £¨5·Ö£© ÊÕÁ²Çø¼äÊÇ x?(0,2] £¨6·Ö£©
35
2·Ö£© £¨