第十八期:概率
张春秀
概率作为新课程改革中新增加的内容,与现实生活有着密切的联系,事件的可能性的大小、游戏是否公平等等都离开对事件概率的考查,在中考中概率的出现也很出彩,新颖的背景,别致的题型一再成为中考的一大亮点,出现形式有选择、填空、方案设计等等,分值一般在3-9分左右。
知识梳理
知识点1:事件的可能性
例1.下列事件中,属于随机事件的是( )
A. 掷一枚普通正六面体骰子,所得点数不超过6 B.买一张彩票中奖 C. 太阳从西边落下 D.口袋中装有10个红球,从中摸出一个是白球
思路点拨:解答本题的关键是分清可能发生、不可能发生、必然发生的意义及它们的区别,对于事件A,由于普通正六面体骰子上六个面的数字分别为1,2,3,4,5,6,都不超过6,所以事件A必然发生;对于事件B,虽然买一张体育彩票中奖的可能性很小,但也有中奖的可能,所以事件B可能发生;事件C:“太阳从西边落下”这是公认的事实,所以事件C必然发生;对于D,由于口袋中中只有红球,所以无法摸出白球,故事件D不可能发生。综上可知,只有B是随机事件。
例2:下列事件是必然事件的是( ) A.阴天一定会下雨
B.打开电视机,任选一个频道,屏幕上正在播放篮球比赛节目 C.某种彩票的中奖率为1%,买100张彩票一定中奖 D.13名学生中一定有两个人在同一个月过生日
思路点拨:由必然事件、不可能事件、不确定事件等的定义可知,A、B、C均为不确定事件,D为必然事件.
练习:
1.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有( )
- 1 -
A.1个 B.2个 C.3个 D.4个 2.下列事件是必然事件的是( ) A.抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA球赛 C.射击运动员射击一次,命中十环 D.若a是实数,则a≥0 答案:1.C 2.D 最新考题
1.(2009·河北省)下列事件中,属于不可能事件的是( ) A.某个数的绝对值小于0 C.某两个数的和小于0
B.某个数的相反数等于它本身 D.某两个负数的积大于0
2.(2009·辽宁省朝阳市)下列事件中,属于不确定事件的有( )
①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小明长大后成为一名宇航员.
A.①②③ 答案:1. A 2. C 知识点2:概率
例1:在一个不透明的盒子中装有4个黑球,n个红球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黑球的概率为
B.①③④
C.②③④
D.①②④
2,则n? . 3思路点拨:本题主要考查概率的计算. 本题主要考查概率的概念和计算方法,我们可以用数值来刻画事件发生的可能性大小,这个数值就是概率。一般地,如果一个实验有n个等可能的结果,而事件A包含其中k个结果,我们这样来计算概率
P(A)?k事件A包含的可能结果数?.利用上面的公式可得n所有可能结果数42?,所以.n=2 4?n3例2.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( )
A.
12 B.
14 C.1 D.
34
- 2 -
思路点拨:对于一个随机事件,它发生的概率是由它自身决定的,并且是客观存在的,概率是随机事件自身的属性,并不因为之前事件发生的情况而改变.第四次抛硬币,其实与之前的三次无关,硬币落地依然有两种等可能的情况:正面朝上、反面朝上.故硬币正面朝上的概率仍是
练习
1.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )。
12.答案:A
A、1 B、3π C、3π D、33269π
2.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )
A.
1111 B. C. D.
3682答案:1.C 2.C 最新考题
1.(2009·浙江省台州市)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )
A.
23 B.
15 C.
25 D.
35
2.(2009·湖南省株洲市)从分别写有数字-4、-3、-2、-1、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是( )
A.
19
1B.
3C.
12 D.
23
3.(2009·福建省福州市)将1、2、3三个数字随机生成的点的坐标,列成表1.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y?x图象上的概率是( )
表1:
(1,1) (2,1) (1,2) (2,2) (1,3) (2,3) - 3 -
(3,1) A.0.3
B.0.5
(3,2) 1C.
3(3,3) D.
23
4.(2009·重庆市綦江县)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为
A.12个
B.9个
12,那么口袋中球的总数为( )
D.3个
C.6个
答案:1.B.2.C. 3.C.4.C. 知识点3:用频率估计概率
例1:一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,
,不断重复上述过程.小明共摸了100
次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )
A.18个
B.15个
C.12个
D.10个
思路点拨:本题考查了利用实验估计已知数目物体出现的频率的平均值来估计总体数目,此类问题一般用方程来求解.设口袋中的白球有x个,由题意,得
320,解得x=12.所以应选C. ?x?3100例2:“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( )
A.60张
B.80张 C.90张 D.110张
思路点拨:本题考查了利用实验估计已知数目物体出现的频率的平均值来估计总体数目,此类问题一般用方程来求解.设有问题卡片的数目x个,由题意,得得x=80.所以应选B.
练习:
1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在
202?,解
x?2010 - 4 -
15%和45%,则口袋中白色球的个数很可能是 个.
2.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
种子粒数 发芽种子粒85 数 发芽频率 0.850 0.745 0.851 0.793 0.802 0.801 398 652 793 1 604 4 005 100 400 800 1 000 2 000 5 000 根据以上数据可以估计,该玉米种子发芽的概率约为 (精确到0.1). 答案:1. 24. 2. 0.8. 最新考题
1.(2009·四川省遂宁市)做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )
A.0.22
B.0.44
C.0.50
D.0.56
2.(2009·甘肃省武威、金昌、定西、白银、酒泉、嘉峪关市)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( )
A.4个
B.6个
C.34个
D.36个
3.(2009·广东省佛山市)在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是
12”,小明做了下列三个模拟实验来验证.
①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值 ②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值
③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值
上面的实验中,不科学的有( ) .A.0个
B.1个
C.2个
D.3个
答案:1. D 2. B 3. A.
- 5 -