好文档 - 专业文书写作范文服务资料分享网站

人教版高中数学必修一 第一章 集合与函数概念 知识点总结

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版高中数学必修一第一章函数与集合

概念知识点总结

第一章集合与函数概念 一、集合有关概念:

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: (1)元素的确定性;(2)元素的互异性;(3)元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ ? }如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

(Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(文氏图): 4、常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集 Z 有理数集Q 实数集 R 5、“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 6、集合的分类:

1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合

二、集合间的基本关系 1.“包含”关系———子集

对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说两集合有包含关系,称集合A为集合B的子集,记作A?B

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?B或B? A 集合A中有n个元素,则集合A子集个数为2n. 2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

?A?B且B?A

①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作A?B(或B?A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A,A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A , A∪B = B∪A.

4、全集与补集

(1)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(2)补集:设S是一个集合,A是S的一个子集(即A?S),由S中 S 所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)。 A 记作: CSA ,即 CSA ={x | x?S且 x?A} (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ⑶(C UA)∪A=U CsA (4)(C UA)∩(C UB)=C U(A∪B) (5)(C UA)∪(C UB)=C U(A∩B)

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式. 定义域补充:

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指

数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. (注意:求出不等式组的解集即为函数的定义域。) 2、构成函数的三要素:定义域、对应关系和值域 注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①定义域一致;②表达式相同(两点必须同时具备) 值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.

(2)、应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法:

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法:

常用变换方法有三种,即平移变换、对称变换和伸缩变换 Ⅰ、对称变换:

(1)将y= f(x)在x轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5

?1?(2) y= f(x)和y= f(-x)的图象关于y轴对称。如y?a与y?a???

?a?(3) y= f(x)和y= -f(x)的图象关于x轴对称。如y?logax与y??logax?log1x

x?xxaⅡ、平移变换: 由f(x)得到f(x?a) 左加右减;由f(x)得到f(x)?a 上加下减

(3)作用:A、直观的看出函数的性质;B、利用数形结合的方法分析解题的思路;C、提高解题的速度;发现解题中的错误。 4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.映射

定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一

人教版高中数学必修一 第一章 集合与函数概念 知识点总结

人教版高中数学必修一第一章函数与集合概念知识点总结第一章集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:(1)元素的确定性;(2)元素的互异性;(3)元素的无序性说明:(1)对于一个给定的集合,集合中的元
推荐度:
点击下载文档文档为doc格式
73wx75y5ur1ujto7zfom
领取福利

微信扫码领取福利

微信扫码分享