好文档 - 专业文书写作范文服务资料分享网站

因式分解的常用方法(方法最全最详细)

天下 分享 时间: 加入收藏 我要投稿 点赞

因式分解的常用方法

第一部分:方法介绍

因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:

(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;

(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)

二、运用公式法.

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

2222

(1) (a+b)(a-b) = a-b -----------a-b=(a+b)(a-b);

222222

(2) (a±b) = a±2ab+b ---------a±2ab+b=(a±b);

22333322

(3) (a+b)(a-ab+b) =a+b---------a+b=(a+b)(a-ab+b);

22333322

(4) (a-b)(a+ab+b) = a-b --------a-b=(a-b)(a+ab+b). 下面再补充两个常用的公式:

2222

(5)a+b+c+2ab+2bc+2ca=(a+b+c);

333222

(6)a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca);

例.已知a,b,c是?ABC的三边,且a?b?c?ab?bc?ca, 则?ABC的形状是( )

A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形 解:a?b?c?ab?bc?ca?2a?2b?2c?2ab?2bc?2ca

222222222?(a?b)2?(b?c)2?(c?a)2?0?a?b?c

1

三、分组分解法.

(一)分组后能直接提公因式

例1、分解因式:am?an?bm?bn

分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=(am?an)?(bm?bn)

=a(m?n)?b(m?n) 每组之间还有公因式! =(m?n)(a?b)

例2、分解因式:2ax?10ay?5by?bx

解法一:第一、二项为一组; 解法二:第一、四项为一组;

第三、四项为一组。 第二、三项为一组。

解:原式=(2ax?10ay)?(5by?bx) 原式=(2ax?bx)?(?10ay?5by) =2a(x?5y)?b(x?5y) =x(2a?b)?5y(2a?b) =(x?5y)(2a?b) =(2a?b)(x?5y)

2练习:分解因式1、a?ab?ac?bc 2、xy?x?y?1

(二)分组后能直接运用公式

例3、分解因式:x?y?ax?ay

分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式=(x?y)?(ax?ay) =(x?y)(x?y)?a(x?y) =(x?y)(x?y?a)

222例4、分解因式:a?2ab?b?c 解:原式=(a?2ab?b)?c =(a?b)?c

=(a?b?c)(a?b?c)

22222练习:分解因式3、x?x?9y?3y 4、x?y?z?2yz

223223综合练习:(1)x?xy?xy?y (2)ax?bx?bx?ax?a?b

222(3)x?6xy?9y?16a?8a?1 (4)a?6ab?12b?9b?4a 2222(5)a?2a?a?9 (6)4ax?4ay?bx?by

43222222222222 2

(7)x2?2xy?xz?yz?y2 (8)a?2a?b?2b?2ab?1 (9)y(y?2)?(m?1)(m?1) (10)(a?c)(a?c)?b(b?2a)

22a?b?c?3abc (11)(12)a2(b?c)?b2(a?c)?c2(a?b)?2abc

四、十字相乘法.

(一)二次项系数为1的二次三项式

直接利用公式——x2?(p?q)x?pq?(x?p)(x?q)进行分解。 特点:(1)二次项系数是1;

(2)常数项是两个数的乘积;

(3)一次项系数是常数项的两因数的和。

333思考:十字相乘有什么基本规律?

例.已知0<a≤5,且a为整数,若2x?3x?a能用十字相乘法分解因式,求符合条件的a.

2解析:凡是能十字相乘的二次三项 式ax2+bx+c,都要求??b2?4ac >0而且是一个完全平方数。 于是??9?8a为完全平方数,a?1

2例5、分解因式:x?5x?6

分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2

2解:x?5x?6=x?(2?3)x?2?3 1 3

2 =(x?2)(x?3) 1×2+1×3=5

用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

2例6、分解因式:x?7x?6

解:原式=x?[(?1)?(?6)]x?(?1)(?6) 1 -1

=(x?1)(x?6) 1 -6

(-1)+(-6)= -7

222练习5、分解因式(1)x?14x?24 (2)a?15a?36 (3)x?4x?5

222练习6、分解因式(1)x?x?2 (2)y?2y?15 (3)x?10x?24

3

2(二)二次项系数不为1的二次三项式——ax?bx?c 条件:(1)a?a1a2 a1 c1

(2)c?c1c2 a2 c2 (3)b?a1c2?a2c1 b?a1c2?a2c1 分解结果:ax?bx?c=(a1x?c1)(a2x?c2)

2例7、分解因式:3x?11x?10

分析: 1 -2 3 -5 (-6)+(-5)= -11

解:3x?11x?10=(x?2)(3x?5)

练习7、分解因式:(1)5x?7x?6 (2)3x?7x?2

2 (3)10x?17x?3 (4)?6y2?11y?10

(三)二次项系数为1的齐次多项式

22222b 例8、分解因式:a?8ab?128分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解。

1 8b

1 -16b 8b+(-16b)= -8b

282=a2?[8b?(?16b)]a?8b?(?16b) 解:a?8ab?12b =(a?8b)(a?16b)

练习8、分解因式(1)x2?3xy?2y2

(2)m?6mn?8n(3)a?ab?6b

(四)二次项系数不为1的齐次多项式

例9、2x?7xy?6y 例10、xy?3xy?2 1 -2y 把xy看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式=(x?2y)(2x?3y) 解:原式=(xy?1)(xy?2)

22练习9、分解因式:(1)15x?7xy?4y (2)ax?6ax?8

222222222222 4

综合练习10、(1)8x?7x?1 (2)12x2?11xy?15y2 (3)(x?y)2?3(x?y)?10 (4)(a?b)2?4a?4b?3

63m?4mn?4n?3m?6n?2 (5)x2y2?5x2y?6x2 (6)

(7)x2?4xy?4y2?2x?4y?3(8)5(a?b)2?23(a2?b2)?10(a?b)2 (9)4x2?4xy?6x?3y?y2?10(10)12(x?y)2?11(x2?y2)?2(x?y)2

思考:分解因式:abcx2?(a2b2?c2)x?abc

五、换元法。

22(1)、换单项式

例1 分解因式x6 + 14x3 y + 49y2.

分析:注意到x6=(x3)2,若把单项式x3换元,设x3 = m,则x6= m2,原式变形为

m2 + 14m y + 49y2= (m + 7y)2 = ( x3 + 7y)2.

(2)、换多项式

例2 分解因式(x2+4x+6) + (x2+6x+6) +x2.

分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x2 +6= m,则x2+4x+6= m+4x,x2+6x+6= m+6x,原式变形为

(m+4x)(m+6x)+x2= m2 +10mx+24x2+x2= m2 +10mx+25x2

= (m+5x)2= ( x2 +6+5x)2

= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.

以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”. 当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”. 比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为

m(m+2x)+ x2 = m2+2mx+x2= (m+x)2= ( x2+4x+6+x)2= ( x2+5x+6)2

5

因式分解的常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的
推荐度:
点击下载文档文档为doc格式
73o7b78bbh8xswn2y1bw
领取福利

微信扫码领取福利

微信扫码分享