②由点D为OA的中点,得到OD=OA=
2
,根据勾股定理即可得到PC+PD=CD=OC+OD=2+(
222222
)
=7,故②正确;
③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,PE=a,则PF=EF﹣PE=2﹣a,根据三角函数的定义得到BE=性质得到FD=
PE=a,求得CE=BC﹣BE=2﹣a=(2﹣a),根据相似三角形的
,根据三角函数的定义得到∠PDC=60°,故③正确;
④当△ODP为等腰三角形时,Ⅰ、OD=PD,解直角三角形得到OD=OC=,Ⅱ、OP=OD,根
据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,根据等腰三角形的性质和四边形的内角和得到∠OCP=105°>90°,故不合题意舍去;于是得到当△ODP为等腰三角形时,点D的坐标为(【解答】解:①∵四边形OABC是矩形,B(2∴OA=BC=2
;故①正确;
,0).故④正确. ,2),
②∵点D为OA的中点, ∴OD=OA=
2
2
2
,
2
2
2
∴PC+PD=CD=OC+OD=2+()=7,故②正确;
2
③如图,过点P作PF⊥OA于F,FP的延长线交BC于E, ∴PE⊥BC,四边形OFEC是矩形, ∴EF=OC=2,
设PE=a,则PF=EF﹣PE=2﹣a, 在Rt△BEP中,tan∠CBO=∴BE=
=
=
,
PE=a,
﹣
∴CE=BC﹣BE=2∵PD⊥PC,
a=(2﹣a),
∴∠CPE+∠FPD=90°, ∵∠CPE+∠PCE=90°, ∴∠FPD=∠ECP, ∵∠CEP=∠PFD=90°, ∴△CEP∽△PFD, ∴∴
==
,
,
∴FD=,
=
=
,
∴tan∠PDC=
∴∠PDC=60°,故③正确; ④∵B(2∴OA=2
,2),四边形OABC是矩形, ,AB=2,
=
,
∵tan∠AOB=
∴∠AOB=30°,
当△ODP为等腰三角形时, Ⅰ、OD=PD,
∴∠DOP=∠DPO=30°, ∴∠ODP=60°, ∴∠ODC=60°, ∴OD=
OC=,
Ⅱ、OP=OD,
∴∠ODP=∠OPD=75°, ∵∠COD=∠CPD=90°,
∴∠OCP=105°>90°,故不合题意舍去; Ⅲ、OP=PD,
∴∠POD=∠PDO=30°,
∴∠OCP=150°>90°故不合题意舍去, ∴当△ODP为等腰三角形时,点D的坐标为(故选:D.
,0).故④正确,
二、填空题(每小题3分,共18分)
11.(3分)2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!数据4.62万亿用科学记数法表示为 4.62
×10 .
【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:4.62万亿=4.62×10, 故答案为:4.62×10
12.(3分)如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为
.
12
12
12
n
【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.
【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光 所以P(灯泡发光)=. 故本题答案为:.
13.(3分)如图所示,点C位于点A、B之间(不与A、B重合),点C表示1﹣2x,则x的取值范围是 ﹣<x<0 .
【分析】根据题意列出不等式组,求出解集即可确定出x的范围. 【解答】解:根据题意得:1<1﹣2x<2, 解得:﹣<x<0, 则x的范围是﹣<x<0, 故答案为:﹣<x<0
14.(3分)如图,?ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为 16 .
【分析】根据平行四边形的性质可得BO=DO=BD,进而可得OE是△ABC的中位线,由三角形中位线定理得出BC=2OE,再根据平行四边形的性质可得AB=CD,从而可得△BCD的周长=△BEO的周长×2.
【解答】解:∵?ABCD的对角线AC、BD相交于点O, ∴BO=DO=BD,BD=2OB, ∴O为BD中点, ∵点E是AB的中点, ∴AB=2BE,BC=2OE, ∵四边形ABCD是平行四边形, ∴AB=CD, ∴CD=2BE. ∵△BEO的周长为8, ∴OB+OE+BE=8,
∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD的周长是16, 故答案为16.
15.(3分)如图,A、B两点在反比例函数y=
的图象上,C、D两点在反比例函数y=
的图象上,
AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=4,EF=3,则k2﹣k1= 4 .
【分析】设出A(a,出结果等于4.
),C(a,),B(b,),D(b,),由坐标转化线段长,从而可求
【解答】解:设A(a,),C(a,),B(b,),D(b,),则
CA=
∴得a=
﹣=2,
,
,得b=
同理:BD=又∵a﹣b=3 ∴
﹣
=3
解得:k2﹣k1=4
16.(3分)如图,抛物线y=﹣x+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.
①抛物线y=﹣x+2x+m+1与直线y=m+2有且只有一个交点;
②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)+m; ④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为
+
.
2
2
2
其中正确判断的序号是 ①③④ .
【分析】①把y=m+2代入y=﹣x+2x+m+1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;
③根据平移的公式求出平移后的解析式便可;
④因BC边一定,只要其他三边和最小便可,作点B关于y轴的对称点B′,作C点关于x轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值. 【解答】解:①把y=m+2代入y=﹣x+2x+m+1中,得x﹣2x+1=0,∵△=4﹣4=0,∴此方程两
2
2
2
四川省达州市2019年中考数学试卷(Word版,含解析)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)