好文档 - 专业文书写作范文服务资料分享网站

2024年高考数学专项复习含真题及解析(共16专题)

天下 分享 时间: 加入收藏 我要投稿 点赞

专题01集合概念与运算考点1

集合的含义与表示

1.【2024年高考全国Ⅲ卷文数1】已知集合A??1,2,3,5,7,11?,B??x|3?x?15?,则A∩B中元素的个数为(A.2)B.3C.4D.52.【2024年高考全国Ⅲ卷理数1】已知集合A?{(x,y)|x,y?N*,y?x},B?{(x,y)|x?y?8},则A?B中元素的个数为(A.2)B.3C.4D.62)x?y?1,B=(x,y│)y?x,则A?B中元素的个数3.【2017新课标3,理1】已知集合A=(x,y│

为A.3B.2C.1D.0,则中元素的个数为()?2???4.【2024新课标2,理1】已知集合A.9B.8C.5D.45.【2013山东,理1】已知集合A={0,1,2},则集合B=?x?y|x?A,y?A?中元素的个数是A.1B.3C.5D.96.【2013江西,理1】若集合A?x?R|ax2?ax?1?0中只有一个元素,则a=A.4B.2C.0D.0或4??7.【2012江西,理1】若集合A?{?1,1},B?{0,2},则集合{z|z?x?y,x?A,y?B}中的元素的个数为(A.5)B.4C.32

2

D.28.【2011广东,理1】已知集合A={(x,y)|x,y为实数,且x?y?1},B={(x,y)|x,y为实数,且x?y?1},则A?B的元素个数为A.4B.3C.2D.19.【2011福建,理1】i是虚数单位,若集合S={-1,0,1},则A.i∈S

B.i∈S

2

C.i∈S

3

D.2

∈Si10.【2012天津,文9】集合A?x?Rx?2?5中的最小整数为_______.??考点2集合间关系

1/4651.【2012新课标,文1】已知集合A?{x|x?x?2?0},B?{x|?1?x?1},则A.AüB

B.BüA

C.A?B

D.A?B??

()2

2.【2012新课标卷1,理1】已知集合A={x|x2-2x>0},B={x|-5<x<5},则A、A∩B=?B、A∪B=RC、B?AD、A?B3.【2015重庆,理1】已知集合A??1,2,3?,B??2,3?,则A.A=BB.A∩B??

C.AüB

D.BüA

)4.【2012福建,理1】已知集合M?{1,2,3,4},N?{?2,2},下列结论成立的是(A.N?M

B.M?N?M

C.M?N?N

D.M?N?{2}

)5.【2011浙江,理1】若P?{x|x?1},Q?{x|x??1},则(A.P?Q

B.Q?P

C.CRP?Q

2

D.Q?CRP

6.【2011北京,理1】已知集合P={x|x?1},M?{a}.若P?M?P,则a的取值范围是A.(?∞,?1]B.[1,+∞)C.[?1,1]D.(?∞,?1]?[1,+∞))7.【2013新课标1,理1】已知集合A={x|x2-2x>0},B={x|-5<x<5=,则(A.A∩B=?B.A∪B=RC.B?AD.A?B8.【2012大纲,文1】已知集合A={x︱x是平行四边形},B={x︱x是矩形},C={x︱x是正方形},D={x︱x是菱形},则A.A?B

B.C?B

C.D?CD.A?D

9.【2012年湖北,文1】已知集合A?{x|x2?3x?2?0,x?R},B?{x|0?x?5,x?N},则满足条件A?C?B的集合C的个数为()A.1B.2C.3D.4考点3集合间的基本运算

1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有(A)2个(B)4个(C)6个(D)8个2

2.【2013新课标2,理1】已知集合M={x∈R|(x?1)?4},N={-1,0,1,2,3},则M∩N=A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3})3.【2013新课标2,文1】已知集合M={x|-3

4.【2013新课标I,文1】已知集合A={1,2,3,4},B?{x|x?n,n?A},则A∩B=((A){1,4}(B){2,3}(C){9,16}(D){1,2})5.【2014新课标1,理1】已知集合A={x|x2?2x?3?0},B={x|-2≤x<2},则A?B=2/465A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2))6.【2014新课标2,理1】设集合M={0,1,2},N=?x|x2?3x?2≤0?,则M?N=(A.{1}B.{2}C.{0,1}D.{1,2}7.【2014新课标1,文1】已知集合M={x|?1?x?3},N={x|?2?x?1}则M?N?(A.(?2,1)

B.(?1,1)

C.(1,3)

D.(?2,3)

2

)8.【2014新课标2,文1】设集合A?{?2,0,2},B?{x|x?x?2?0},则A?B?(A.?

B.?2?C.{0}

D.{?2}

)9.【2015新课标2,理1】已知集合A?,B?x(x?1)(x?2?0,则A?B?({?2,?1,0,1,2}

A.A???1,0?B.?0,1?C.??1,0,1?D.?0,1,2???)10.【2015新课标1,文1】已知集合A?{xx?3n?2,n?N},B?{6,8,10,12,14},则集合A?B中的元素个数为((A)5)(B)4(C)3(D)2)11.【2015新课标2,文1】已知集合A??x|?1?x?2?,B??x|0?x?3?,则A?B?(A.??1,3?B.??1,0?C.?0,2?D.?2,3?212.【2016新课标1,理1】设集合A?{x|x?4x?3?0},B?{x|2x?3?0},则A?B=(A)(?3,?)(B)(?3,)(C)(1,)(D)(,3)

【2016新课标2,理2】已知集合A?{1,2,3},B?{x|(x?1)(x?2)?0,x?Z},则A?B?(13.(A){1}

)3

23232322}(B){1,1,2,3}(C){0,0,1,2,3}(D){?1,

14.【2016新课标3,理1】设集合S??x|(x?2)(x?3)?0?,T??x|x?0?,则S?T=(A)[2,3](C)[3,+?)(B)(-?,2]U[3,+?)(D)(0,2]U[3,+?)2,,3}B?{x|x2?9},则A?B?()15.【2016新课标2,文1】已知集合A?{1,

(A){?2,?1,0,1,2,3}(B){?2,?1,0,1,2}(C){1,2,3}(D){1,2})16.【2016新课标1,文1】设集合A?{1,3,5,7},B?{x|2?x?5},则A?B?((A){1,3}(B){3,5}(C){5,7}(D){1,7}17.【2016新课标3,文1】设集合A?{0,2,4,6,8,10},B?{4,8},则eAB=(A){4,8}(B){0,2,6}(C){0,2,6,10}x

(D){0,2,4,6,810},18.【2017新课标1,理1】已知集合A={x|x<1},B={x|3?1},则A.A?B?{x|x?0}

B.A?B?R

3/465C.A?B?{x|x?1}D.A?B??

)19.【2017新课标1,文1】已知集合A=?x|x?2?,B=?x|3?2x?0?,则(?A.A?B=?x|x???C.A?B??x|x??3??2?3??2?B.A?B??D.A?B=R20.【2017新课标2,理2】设集合???1,2,4?,??xx?4x?m?0.若?????1?,则??(?2

?)A.?1,?3?B.?1,0?C.?1,3?D.?1,5?,2,3?, B??2,3,4?, 则A?B=()21.【2017新课标2,文1】设集合A??1,2,3,4?A.?1

A.1,2,3?B.?1

B.23,4?C.?2,,3,4?D.?1

)C.3,则D.422.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A?B中元素的个数为(23.【2024新课标1,理1】已知集合A.C.B.D.,D.,D.,24.【2024新课标3,理1】已知集合A.B.C.,则【2024新课标1,文1】已知集合25.A.B.C.,则()26.【2024新课标2,文1】已知集合A.B.C.D.,则27.【2024新课标1,理1】已知集合M?x?4?x?2,N?{xx?x?6?0?,则M?N=(2??)A.{x?4?x?3?C.{x?2?x?2?B.{x?4?x??2?D.{x2?x?3?28.【2024新课标1,文2】已知集合U??1,2,3,4,5,6,7?,A??2,3,4,5?,B??2,3,6,7?,则B?CUA=()A.?1,6?B.?1,7?C.?6,7?D.?1,6,7?29.【2024新课标2,理1】设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)30.【2024新课标2,文1】.已知集合A={x|x??1},B?{x|x?2},则A∩B=4/465A.(–1,+∞)C.(–1,2)B.(–∞,2)D.?31.【2024新课标3,理1】已知集合A???1,0,1,2?,B?xx?1,则A?B?(2??)D.?0,1,2?A.??1,0,1?B.?0,1?C.??1,1?32.【2024浙江,1】已知全集U???1,0,1,2,3?,集合A??0,1,2?,B???1,0,1?,则eUA?B=A.??1?B.?0,1??

C.??1,2,3?D.??1,0,1,3?33.【2024天津,理1】设集合A?{?1,1,2,3,5},A.?2?B.?2,3?B?{2,3,4},C?{x?R|1x?3},则(A?C)?B?

D.?1,2,3,4?C.??1,2,3?34.【2011辽宁,理1】已知M,N为集合I的非空真子集,且M,N不相等,若N?eIM??,则M?N?A.MB.NC.ID.?35.【2024天津,理1】设全集为R,集合A?{x0?x?2},B?{xx≥1},则AI(eRB)?A.{x0?x≤1}

B.{x0?x?1}

C.{x1≤x?2}

D.{x0?x?2}

36.【2017山东,理1】设函数y?

A.(1,2)

B.(1,2]

4?x2的定义域A,函数y?ln(1?x)的定义域为B,则A?B=()C.(?2,1)

D.[?2,1)

37.【2017天津,理1】设集合A?{1,2,6},B?{2,4},C?{x?R|?1≤x≤5},则(A?B)?C?A.{2}

B.{1,2,4}

C.{1,2,4,6}

D.{x?R|?1≤x≤5}

38.【2017浙江,理1】已知集合P?{x|?1?x?1},Q?{x|0?x?2},那么P?Q=A.(?1,2)

B.(0,1)

C.(?1,0)

D.(1,2)

【2016年山东,理1】设集合A?{y|y?2x,x?R},B?{x|x2?1?0},则A?B=39.A.(?1,1)B.(0,1)C.(?1,??)D.(0,??)则A?B=40.【2016年天津,理1】已知集合A?{1,2,3,4},B?{y|y?3x?2,x?A},A.{1}B.{4}C.{1,3}2

D.{1,4}41.【2015浙江,理1】已知集合P?{xx?2x≥0},Q?{x1?x≤2},则(eRP)?Q?

A.[0,1)

B.(0,2]

C.(1,2)

D.[1,2]

42.【2015四川,理1】设集合A={x|(x?1)(x?2)?0},集合B?{x|1?x?3},则A?B=A.{x|?1?x?3}C.{x|1?x?2}

B.{x|?1?x?1}D.{x|2?x?3}

43.【2015福建,理1】若集合A?i,i2,i3,i4(i是虚数单位),B??1,?1?,则A?B等于(??)5/465

2024年高考数学专项复习含真题及解析(共16专题)

专题01集合概念与运算考点1集合的含义与表示1.【2024年高考全国Ⅲ卷文数1】已知集合A??1,2,3,5,7,11?,B??x|3?x?15?,则A∩B中元素的个数为(A.2)B.3C.4D.52.【2024年高考全国Ⅲ卷理数1】已知集合A?{(x,y)|x,y?N*,y?x},B?{(x,y)|x?y?8},则A?B中元素的个数为(A.2)B.3C.4D.6
推荐度:
点击下载文档文档为doc格式
737ok80uzt57eja0pqkz5136q5t3m0006qz
领取福利

微信扫码领取福利

微信扫码分享