离散数学必备知识点
总结
精品文档
总结 离散数学知识点
第二章 命题逻辑
1.→,前键为真,后键为假才为假;<—>,相同为真,不同为
假;
2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之
积;
3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相
反;
4.求极大极小项时,每个变元或变元的否定只能出现一次,求
极小项时变元不够合取真,求极大项时变元不够析取假;
5.求范式时,为保证编码不错,命题变元最好按的顺序依次
写;
6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(02n1)刚好为化简
完后的主析取加主合取;
8.永真式没有主合取范式,永假式没有主析取范式;
9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推
出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则
①真值表法;②直接证法;③归谬法;④附加前提法;
收集于网络,如有侵权请联系管理员删除
精品文档
第三章 谓词逻辑
1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质;
多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;
2.全称量词用蕴含→,存在量词用合取^;
3.既有存在又有全称量词时,先消存在量词,再消全称量词;
第四章 集合
1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,;
3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,
P(A);
4.若集合A有n个元素,幂集P(A)有2个元素,(A)2|A|2; 5.集合的分划:(等价关系)
nn ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A);
6.集合的分划与覆盖的比较:
分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次;
收集于网络,如有侵权请联系管理员删除
精品文档
第五章 关系
1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的
基数为,A到B上可以定义2mn种不同的关系;
2.若集合A有n个元素,则×n2,A上有2n个不同的关系;
23.全关系的性质:自反性,对称性,传递性;
空关系的性质:反自反性,反对称性,传递性;
全封闭环的性质:自反性,对称性,反对称性,传递性;
4.前域():所有元素x组成的集合;
后域():所有元素y组成的集合;
5.自反闭包:r(R)Ix;
对称闭包:s(R)R-1; 传递闭包:t(R)R2R3……
6.等价关系:集合A上的二元关系R满足自反性,对称性和传
递性,则R称为等价关系;
7.偏序关系:集合A上的关系R满足自反性,反对称性和传递
性,则称R是A上的一个偏序关系;
8.{<>属于A,y盖住x};
9.极小元:集合A中没有比它更小的元素(若存在可能不唯
一);
极大元:集合A中没有比它更大的元素(若存在可能不唯一);
收集于网络,如有侵权请联系管理员删除
精品文档
最小元:比集合A中任何其他元素都小(若存在就一定唯一);
最大元:比集合A中任何其他元素都大(若存在就一定唯一);
10.前提:B是A的子集
上界:A中的某个元素比B中任意元素都大,称这个元素是B的上界(若存在,可能不唯一);
下界:A中的某个元素比B中任意元素都小,称这个元素是B的下界(若存在,可能不唯一);
上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一);
第六章 函数
1.若,则从X到Y有2种不同的关系,有n种不同的函数; 2.在一个有n
mnm个元素的集合上,可以有2n2种不同的关系,有nn种不同的函数,有n!种不同的双射;
3.若,且m<,则从X到Y有Am种不同的单射; n
4.单射:,对任意x1,x2属于X,且x1≠x2,若f(x1)≠f(x2);
满射:,对值域中任意一个元素y在前域中都有一个或多个元素对应;
双射:,若f既是单射又是满射,则f是双射;
5.复合函数:fo(f(x)); 6.设函数,,那么
收集于网络,如有侵权请联系管理员删除