好文档 - 专业文书写作范文服务资料分享网站

《数学分析》第十一章反常积分复习自测题[1]

天下 分享 时间: 加入收藏 我要投稿 点赞

第十一章 反常积分复习自测题

一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题:

1、正确地判断下列反常积分的敛散性:

??a??111(1)?();(2)();(3)。 dxdxa?0a?0p?0xp?0xpdx(a?0)ax2、正确地判断下列反常积分的敛散性:

(1)???a1x(lnx)pdx(a?1);(2)?a11x(lnx)pdx(a?1);(3)???11x(lnx)pdx。

3、探索下列反常积分的敛散性,若收敛,并求其值: (1)???011?x2(2)?dx;

????11?x2(3)?dx;

1011?x2dx;(4)?1?111?x2dx。

4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶

函数的积分特征)

(1)若函数f(x)在[a,??)上连续,F(x)为f(x)在[a,??)上的原函数,记

F(??)?limf(x),

x???则无穷积分???af(x)dx收敛?F(??)?limf(x)存在,且

x??????af(x)dx?F(x)??a。

(2)若函数f(x)在(??,??)上连续,F(x)为f(x)在(??,??)上的原函数,记

F(??)?limf(x),F(??)?limf(x),

x???x???则无穷积分?????f(x)dx收敛?F(??)?limf(x)和F(??)?limf(x)都存在,且

x???x??????af(x)dx?F(x)??a。

(3)若函数f(x)和g(x)都在[a,??)上连续可微,且limf(x)g(x)存在,则无穷积分

x??????af(x)g?(x)dx收敛???a???af?(x)g(x)dx收敛,且

?f(x)g?(x)dx??f(x)g(x)???a????af?(x)g(x)dx,

其中f(??)g(??)?limf(x)g(x)。

x???(4)若函数f(x)在[a,??)上连续,x??(t)在[?,?)(其中?为有限数或??)上连续可导,且严格单调递增,则无穷积分??([?,?))?[a,??),敛,且

??a??af(x)dx收敛?积分???f(?(t))??(t)dt收

?f(x)dx????f(?(t))??(t)dt。

(5)设函数f(x)在(??,??)上连续, 若f(x)为偶函数,则?????????f(x)dx收敛????0f(x)dx收敛,且

???若f(x)为奇函数,则?????f(x)dx?2?0f(x)dx;

????f(x)dx收敛????0f(x)dx收敛,且?f(x)dx?0。

提示:注意由换元法可得

0??x??t0????0?f(x)dx???f(?t)dt?????f(t)dt,f为偶函数??0。 f(?t)dt??????f(t)dt,f为奇函数??0ba??a二、举例说明下面关系不一定成立:

1、瑕积分?baf(x)dx收敛不一定能推出瑕积分???af(x)dx;无穷积分?2f(x)dx收敛也不

一定能推出无穷积分???af(x)dx收敛;

2注:定积分的乘法性对反常积分不一定成立。 2、无穷积分?f(x)dx收敛不一定能推出无穷积分???af(x)dx收敛;

注:注意与定积分的绝对值性质的区别。 3、设函数f(x)在[a,??)上连续,且?x?????af(x)dx收敛,则limf(x)?0不一定成立;

x???三、通过下面的问题探索limf(x)的情况:

1、设函数f(x)定义在[a,??)上,且在任何[a,u]?[a,??)上可积,?x?????af(x)dx收敛,若

limf(x)?A存在,则limf(x)?0;

x???2、利用1探索:

(1)设函数f(x)在[a,??)上单调,且???af(x)dx收敛,则limf(x)?0;

x?????a(2)设函数f(x)在[a,??)上连续可导,且?x???f(x)dx与???af?(x)dx都收敛,则

limf(x)?0;

3、设函数f(x)在[a,??)上连续,且?一致连续;

??a则limf(x)?0?f(x)在[a,??)上f(x)dx收敛,

x???4、设函数f(x)在[a,??)上连续,且?(1)证明:当u?a时,limu?????af(x)dx收敛,试探索下面的问题:

?u?cu,从而 f(x)dx?0(其中c为任意给定的正数)

limn???a?n?1a?nf(x)dx?0;

提示:注意到无穷积分的定义即可。

(2)利用(1)和积分第一中值公式证明:在[a,??)中,存在严格递增的数列{xn}满足:

limxn???,limf(xn)?0;

n??n??(3)类似于(1)方法证明:若函数f(x)在[a,??)上单调递增(减),且?则还有limxf(x)?0。

x?????af(x)dx收敛,

1注:注意到第三大题的第2小题(1),(3)表明:f(x)?o()(x???)。

x提示:不妨设f(x)在[a,??)上单调递增,注意到下面的积分不等式以及无穷积分的定义即可:

u12u2uu当u?2a时,2?f(x)dx?uf(u)??f(x)dx。

5、若函数f(x)在[a,??)(a?0)上连续可微,且单调递增(减),则

???a??af(x)dx收敛????axf?(x)dx收敛。

提示:利用第三大题的第4小题(3)以及反常积分的分部积分公式

?xf?(x)dx????axdf(x)?xf(x)??a????af(x)dx。

四、仔细体会并熟练掌握无穷积分和瑕积分的线性性、区间可加性和绝对值性质(注意体会性质的内容、含义以及在反常积分敛散性判别中的作用);理解反常积分绝对收敛和条件收敛的含义;用适当性质解决下面的问题:

1、若无穷积分???af(x)dx收敛,无穷积分???ag(x)dx发散,则无穷积分

?提示:反证法。 2、判断???2??a?f(x)?g(x)?dx发散;

1?1??2xlnx?x??dx的敛散性; ?

《数学分析》第十一章反常积分复习自测题[1]

第十一章反常积分复习自测题一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题:1、正确地判断下列反常积分的敛散性:??a??111(1)?();(2)();(3)。dxdxa?0a?0p?0xp?0xpdx(
推荐度:
点击下载文档文档为doc格式
72o7z1omwp036aw5ujwi
领取福利

微信扫码领取福利

微信扫码分享