[9] Huo Q S, Margolese D I. Ultraslow Temperature Synthesis of Ordered Hexagonal
Smaller Supermicroporous Silica Using Semifluorinated Surfactants as Template. Nature, 1994, 378: 317-321
[10] Tanev P T, Pinnavaia T J. Recent Progress in the Synthesis of Porous
Carbon Material. Science, 1995, 267: 865-867
[11] Bagshaw S A, Prouzet E, Pinnavaia T J. Energetically Favored Formation of
MCM-48 from Cationic-Neutral Surfactant Mixtures. Science, 1995, 269 (5228): 1242-1244
[12] Kim S S, Zhang W, Pinnavaia T J. Hydrothermal stability of MCM-48 Improved
by post-synthesis restructuring in salt solution. Science, 1998, 282: 1032-1035
[13] Zhang W Z, Glomski B, Pauly T R, Pinnavaia T J. Investigation of the
Morphology of the Mesoporous SBA-15 and SBA-16 Materials. Chem. Commun., 1999: 1803-1805
[14] Kim S, Liu Y, Pinnavaia T J. Micropor. Facile synthesis of high quality
mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness Mesopor. Mater, 2001, 44-45: 489-498
[15] Mercier L, Pinnavaia T J. Fabrication of well-ordered macroporous active
carbon with a microporous framework. Chem. Mater. 2000, 12 (1): 188-190
[16] Zhao D, Feng J, Huo Q. Nonionic Triblock and Star Diblock Copolymer and
Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Science, 1998, 279: 548-553
[17] Zhao D, Huo Q, Feng J, et al. J. Fabrication of Carbon Capsules with
Hollow Macroporous Core/Mesoporous Shell Structures. Am. Chem. Soc. 1998, 120: 6024-6029
[18] Studky G D , Chmelka B F , Zhao D , et al. Exchange Resins in shape
Fabrication of Hollow Inorganic and Carbonaceous-Inorganic. Int. Patent WO99/37705 (July 1999)
[19] 冯芳霞,窦涛,等.干粉法合成中孔分子筛MCM-41.石油学报(加工版),1998,3:22-26
[20] Huo Q, Hargoless D I, Stucky G D, et al. An Aqueous Cooperative Assembly
Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. Nature, 1994, 368: 317-321
[21] Kresge C T, Leonowicz M E, Roth W J, et al. Metallica Mesoporous
Nanocomposites for Electro catalysis. Nature, 1992, 359: 710-712
[22] Tanev P T, Chibwe M, Pinnavaia T J. Nanoporous Metals with Controlled
Multimodal Pore Size Distribution. Nature, 1994, 368: 321-323
[23] Corma A, Fornes V, Navarro M T, et al. Synthesis of highly ordered MCM-41
by Micelle-packing control with mixed surfactant. J Catal, 1994, 148: 569-574
[24] Hou Q, Clesla U, Koyano A, et al. Triblock copolymer syntheses of
mesoporous silica with period 50 to 300 angstrom pores. Chem Mater, 1994, 6: 1176-1191
[25] Corma A, Martinez A et al. A facile preparation of transparent and
monolithie mesoporous silica materials. J Catal, 1995, 153: 25-30
[26] Stucky G D, Hou Q, Firouzi A, et al. Preprints Symposia Division of
Petroleum. Stud Surf Sci Catal, 1996, 105: 3-28
[27] 周四清,伏再辉,等.钒络合物在中孔载体HMS上的组装.湖南师范大学自然科学学
报,2002,25(1): 47-50
[28] 袁忠勇,王敬中,等.MCM-41分子筛的合成与表征.精细石油化工,1997,(4): 5-8
[29] 张小明,张兆荣,等.介孔硅基分子筛研究新进展.化学通报,2000,(3):29-31
[30] 赵杉林,翟玉春,等.钒硅MCM-41沸石分子筛微波合成与表征.石油化
工,1999,28(3):22-28
[31] 郭建新,王乐夫,等.精细石油化工,2000,(7):44-49
[32] 加璐,程代云,等.制备活性炭的资源开发.新型碳材料,1994,(4),15-21
[33] Kresge C T, Leonowicz M E, Roth W J, et al. Nature. 1992, 359(6397): 710-714
[34] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular
sieves via template mediated structural transformation. J Phy. Chem. B, 1999, 103: 7743-7746
[35] Fuertes A B, Nevskaia D M. Control of mesoporous structure ofcarbons
synthesised using amesostructured silica as temp late. Micropor Mesopor Mater, 2003, 62: 177-190
[36] 沈曾民.碳源对碳纳米管形态的影响.新型碳材料.北京:化学工业出版社, 2003,4:55
[37] Zhang W H, Liang C, Sun H, et al. Synthesis of ordered mesoporous carbons
composed of nanotubes via catalytic chemical vapor deposition. Adv. Mater., 2002, 14: 1776-1778
[38] 王连洲,施剑林,禹剑,等.合成温度对介孔氧化硅材料相结构的影响.无机材料学
报,1999,14(3):333-337
[39] 陈航榕,施剑林,禹剑,等.非硅组成有序介孔材料的组成及应用.硅酸盐学
报,2000,28(3):259-264
[40] 王宏志,高濂,郭景坤.纳米结构材料.硅酸盐通报,1999,(1):31-37
第二部分 实验方案设计
实验目的:
1. 用P123合成介孔氧化硅模板SBA-15
2. 用介孔氧化硅为“硬模板”来合成有序介孔炭
所需化学试剂:
P123(聚环氧乙烯醚-聚环氧丙稀醚-聚环氧乙烯醚,摩尔比为20:70:20),正硅酸乙酯(TEOS,Aldrich),蒸馏水,HCL(35 wt%),乙醇,氢氟酸,蔗糖,硫酸
所需实验仪器:
烧杯,夹层烧杯,烘干箱,电磁搅拌器,电子天平,恒温水浴震荡器,比表面积和孔隙度测定仪,扫描电子显微镜,X-射线衍射仪
实验步骤:
2.4.1 氧化硅模板SBA-15的合成
(1)将32g P123(聚环氧乙烯醚-聚环氧丙稀醚-聚环氧乙烯醚,摩尔比为20:70:20)三嵌段聚合物表面活性剂(平均分子量为5800,分子式EO20PO70EO20,Aldrich)溶于1000g蒸馏水和200g HCL(35 wt%)中,在40℃下搅拌4个小时,以确保表面活性剂在水相体系中均匀分散。
(2)往溶液中加入68.8g正硅酸乙酯(TEOS,Aldrich),于40℃下搅拌15分钟,并在
40℃静置24小时。
(3)继续在40℃下陈化24小时。
(4)所得沉淀经过滤、并用乙醇洗涤。洗涤后的样品在550℃下焙烧2小时除去模板剂,所得样品标记为SBA-15-40。
(5)保持其它合成条件不变,仅改变陈化温度,分别在70℃和100℃下陈化24小时,所得到的样品分别标记为SBA-15-70和SBA-15-100。