好文档 - 专业文书写作范文服务资料分享网站

高中数学解三角形知识点与历年各地高考真题汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

——解三角 形无忧数学 (复习二) 解三角形

一.正弦定理:

1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,

abc即???2R(其中R是三角形外接圆的半径) sinAsinBsinCa?b?cabc2.变形:1). ???sin??sin??sinCsin?sin?sinC2)化边为角:a:b:c?sinA:sinB:sinC;

asinAbsinBasinA?;?;?; bsinBcsinCcsinC 3)化边为角:a?2RsinA,b?2RsinB,c?2RsinC

sinAasinBbsinAa?;?;?; sinBbsinCcsinCcabc 5)化角为边:sinA? ,sinB?,sinC?2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:

①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a,

asinAbsinBasinA;?;?;求出b与c②已知解法:由A+B+C=180o ,求角A,由正弦定理?bsinBcsinCcsinC两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A,

asinA 解法:由正弦定理?求出角B,由A+B+C=180o 求出角C,再使用正弦定理

bsinBasinA?求出c边 csinC

4.△ABC中,已知锐角A,边b,则 ①a?bsinA时,B无解; b bsinA ②a?bsinA或a?b时,B有一个解; ③bsinA?a?b时,B有两个解。 A 4)化角为边:

如:①已知A?60?,a?2,b?23,求B(有一个解) ②已知A?60?,b?2,a?23,求B(有两个解) 注意:由正弦定理求角时,注意解的个数。

二.三角形面积

1111.S?ABC?absinC?bcsinA?acsinB

22212. S?ABC?(a?b?c)r,其中r是三角形内切圆半径.

23. S?ABC?4. S?ABC?p(p?a)(p?b)(p?c), 其中p?abc,R为外接圆半径 4R1(a?b?c), 25.S?ABC?2R2sinAsinBsinC,R为外接圆半径

三.余弦定理

1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即

a2?b2?c2?2bccosA b2?a2?c2?2accosB c2?a2?b2?2abcosC b2?c2?a22.变形:cosA?

2bca2?c2?b2cosB?

2aca2?b2?c2cosC?

2ab注意整体代入,如:a2?c2?b2?ac?cosB?1 23.利用余弦定理判断三角形形状:

设a、b、c是???C的角?、?、C的对边,则:

①若,

②若c2?b2?a2?A为直角

,所以为锐角

③若, 所以为钝角,则是钝角三角形

3 利用余弦定理可以解决下列两类三角形的问题: 1)已知三边,求三个角

2)已知两边和它们的夹角,求第三边和其他两个角

四、应用题

1.已知两角和一边(如A、B、C),由A+B+C = π求C,由正弦定理求a、b. 2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角.

3.已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况.

4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π,求角C.

5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目 标的方向线所成的角(一般指锐角),通常表达成.正北或正南,北偏东××度, 北偏西××度,南偏东××度,南偏西××度.

6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上 方的角叫仰角,视线在水平线下方的角叫俯角.

视线

五、三角形中常见的结论

铅1)三角形三角关系:A+B+C=180°;C=180°—仰角 (A+B); 直2)三角形三边关系: 两边之和大于第三边:两边之差小于第三边:

,,

线

水平线

,,俯角 ; ; 3)在同一个三角形中大边对大角:A?B?a?b?sinA?sinB

4) 三角形内的诱导公式: 视线 sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC,

?CCsin(?)cos()A?B?C22?2 tan?tan(?)??CC222cos(?)sin()2225) 两角和与差的正弦、余弦、正切公式

(1)sin(α±β)=sin αcos β±cos αsin β.

(2)cos(α±β)=cos αcos β?sin αsin β.

tan α±tan β

(3)tan(α±β)=.

1?tan αtan β

6) 二倍角的正弦、余弦、正切公式

(1)sin 2α=2sin αcos α.

(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)sin2??

2tan α(4)tan 2α=.

1-tan2α

7) 三角形的五心:

垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点 外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点

旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点

1?cos2?1?cos2? ;cos2??22解三角形高考真题及答案解析

sin2A?. sinC1.(15北京理科)在△ABC中,a?4,b?5,c?6,则

【答案】1 【解析】

2?425?36?16sin2A2sinAcosA2ab2?c2?a2???1 ???试题分析:

sinCsinCc2bc62?5?6考点:正弦定理、余弦定理

高中数学解三角形知识点与历年各地高考真题汇总

——解三角形无忧数学(复习二)解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,abc即???2R(其中R是三角形外接圆的半径)sinAsinBsinCa?b?cabc2.变形:1).???sin??sin??sinCsin?sin?sinC2)化边为角:a:b:c?sinA
推荐度:
点击下载文档文档为doc格式
726pg4iyww7f1wl0k4bu3bj0w6iihw013ju
领取福利

微信扫码领取福利

微信扫码分享