湖北省2020年最新中考数学必刷试
一、选择题1、若一元二次方程A.
B.
的一个根是
C.
,则原方程的另一个根是( )
D.
2、下面的图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3、下列说法错误的是
A.必然事件发生的概率为 B.不可能事件发生的概率为
C.有机事件发生的概率大于等于、小于等于
D.概率很小的事件不可能发生
4、如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为( )
A.110° B.140° C.145° D.150°5、关于函数y=﹣(x+2)2﹣1的图象叙述正确的是( )A.开口向上 B.顶点(2,﹣1)
C.与y轴交点为(0,﹣1) D.对称轴为直线x=﹣26、方程x2﹣2x+3=0的根的情况是( )
A.两实根的和为﹣2 B.两实根的积为3C.有两个不相等的正实数根 D.没有实数根
7、将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为( )A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1
8、如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为( )
A.6 B.5 C.4 D.3
9、已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是( )
A.﹣3<m<2 B.﹣<m<- C.m>﹣ D.m>2
的值为
10、如图,已知正方形ABCD,点E,F分别在CD,BC上,且∠EAF=∠DAE+∠BAF,则( )
A. B. C. D.
11、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣4,3),C(﹣1,1).写出各点关于原点的对称点的坐标_____,_____,_____.
12、为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是_________.
13、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.
14、一个正n边形的中心角等于18°,那么n=_____.
15、如图,?ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm2.
16、如图,抛物线y=ax2﹣1(a>0)与直线y=kx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称,则点P的坐标是_____
17、解分式方程:
18、如图,已知AB,CG是⊙O的两条直径,AB⊥CD于点E,CG⊥AD于点F.(1)求∠AOG的度数;
(2)若AB=2,求CD的长.
19、密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××(注:中旬为某月中的11日﹣20日),小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是 .(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率.
20、如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
21、如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.(1)求证:DE是⊙O的切线;(2)若AB=10,求线段OG的长.
22、为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.
(1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;(2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?
(3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.
23、如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO
上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点 D.(1)用t表示点D的坐标 ;
(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.