凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
九年级数学下册第3章圆3-8圆内接正多边形教案新版北师大版_
一、教学目标
1.了解正多边形和圆的有关概念.
2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.
二、课时安排 1课时
三、教学重点
理解并掌握正多边形半径和边长、边心距、中心角之间的关系 四、教学难点
会应用多边形和圆的有关知识画多边形. 五、教学过程 (一)导入新课
你还能举出更多正多边形的例子吗? (二)讲授新课 活动内容1: 探究1:正多边形
正多边形:___________,_____________的多边形叫做正多边形.
正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形. 【想一想】
菱形是正多边形吗?矩形是正多边形吗?为什么? 求证:正五边形的对角线相等
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
1 / 5
凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
怎样找圆的内接正三角形?怎样找圆的外切正三角形? 怎样找圆的内接正方形?怎样找圆的外切正方形? 怎样找圆的内接正n边形?怎样找圆的外切正n边形? 【定理】把圆分成n(n≥3)等份:
依次连接各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
一个正多边形是否一定有外接圆和内切圆?
【类比联想】正三角形:有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?
正方形:有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?
那么,正n边形呢?
探究2:正多边形是轴对称图形,正n边形有n条对称轴.若n为偶数,则其为中心对称图形.
活动2:探究归纳
【定理】任何正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆. 正多边形的中心:一个正多边形的外接圆的圆心. 正多边形的半径:外接圆的半径
正多边形的中心角:正多边形的每一边所对的圆心角. 正多边形的边心距:中心到正多边形的一边的距离. 以中心为圆心,边心距为半径的圆与各边有何位置关系? 以中心为圆心,边心距为半径的圆为正多边形的内切圆。 (三)重难点精讲
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
2 / 5