深圳市2024年初中毕业生学业考试
数学试卷
说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。考试时间90
分钟,满分100分。
2、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案
一律无效。答题卡必须保持清洁,不能折叠。
3、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的
位置上,将条形码粘贴好。
4、本卷选择题1—10,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题
目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
5、考试结束,请将本试卷和答题卡一并交回。
第一部分 选择题
(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的) 1.4的算术平方根是
A.-4 B.4 C.-2 D.2 2.下列运算正确的是
2352352510A.a?a?a B.a?a?a C.(a)?a D.a÷a?a
2353.2024年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位, 用科学记数法表示为
A.22?10 B.2.2?10 C.2.2?10 D.0.22?10 4.如图1,圆柱的左视图是
图1 A B C D
5.下列图形中,既是轴对称图形又是中心对称图形的是 .... A B C D
6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是 ..A.众数是80 B.中位数是75 C.平均数是80 D.极差是15 7.今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后
购买100000元股票,则比调整前少交证券交易印花税多少元?
A.200元 B.2000元 C.100元 D.1000元
3545
8.下列命题中错误的是 ..
A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形
C.矩形的对角线相等 D.对角线相等的四边形是矩形 9.将二次函数y?x的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表 达式是
A.y?(x?1)?2 B.y?(x?1)?2 C.y?(x?1)?2 D.y?(x?1)?2 10.如图2,边长为1的菱形ABCD绕点A旋转,当B、C两点
恰好落在扇形AEF的弧EF上时,弧BC的长度等于
A.
EB图 2C22222ADF???? B. C. D. 6432第二部分 非选择题
填空题(本题共5小题,每小题3分,共15分)
11.有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是 12.分解因式:ax?4a? 13.如图3,直线OA与反比例函数y?点B,△OAB的面积为2,则k= yy B AA 街道旁 BOxOx 图 4图3 14.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、
B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图4所示的平面 直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站 距离之和的最小值是 15.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a+b的值为 0 1 2 3 … 1 3 5 7 … 11 13 11 2 5 8 11 … 17 b 14 3 7 11 15 … a … … … … … 表一 表二 表三
2k(k?0)的图象在第一象限交于A点,AB⊥x轴于 x解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第
20题8分,第21题9分,第22题10分,共55分)
16.计算:?3?3?tan30??38?(2008??)0
17.先化简代数式?2?1?a?÷,然后选取一个合适的a值,代入求值. ?..2?a?2a?2?a?4
18.如图5,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的
延长线于点E,且∠C=2∠E. AB(1)求证:梯形ABCD是等腰梯形.
(2)若∠BDC=30°,AD=5,求CD的长.
EDC 图 5
19.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图6和
图7所示的统计图.根据图中信息解答下列问题: 销售量(个) 140012001200
1000
800
C品牌600 400 50@0
200品牌
0A品牌B品牌C品牌图 7
图 6
(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.
(3)写出A品牌粽子在图7中所对应的圆心角的度数.
(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货? 请你提一条合理化的建议.
20.如图8,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO. (1)求证:BD是⊙O的切线. BE(2)若点E是劣弧BC上一点,AE与BC相交于点F, 且△BEF的面积为8,cos∠BFA=
2,求△ACF的面积. 3FDAOC 21.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食
图 8
品共320件,帐篷比食品多80件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已..知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
22.如图9,在平面直角坐标系中,二次函数y?ax?bx?c(a?0)的图象的顶点为D点,
与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0), OB=OC ,tan∠ACO=
21. 3(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
yyEAOBxAOBxCD图 9CD图 10G深圳市2024年初中毕业生学业考试
数学试卷
参考答案及评分意见
第一部分 选择题(本题共10小题,每小题3分,共30分) 题号 答案 1 D 2 B 3 C 4 C 5 B 6 B 7 A 8 D 9 A 10 C 第二部分 非选择题
填空题(本题共5小题,每小题3分,共15分) 题号 11 12 13 14 15 答案 1 5a(x?2)(x?2) 4 10 37 解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)
16.解: 原式=3?3?3?2?1 3…………………1+1+1+1分 …………………………5分 …………………………6分
=3?1?2?1 =1 (注:只写后两步也给满分.) 17.解: 方法一: 原式=??a(a?2)2(a?2)?1 ???2?(a?2)(a?2)(a?2)(a?2)?a?4
a2?4(a?2)(a?2) =
(a?2)(a?2)=a?4
2 …………………………5分
(注:分步给分,化简正确给5分.) 方法二:原式=?2??a??(a?2)(a?2) a?2a?2??
=a(a?2)?2(a?2) =a?4
2 …………………………5分