Ika*?3Ika0?3?3?????Z1?Ea1??Z2??Z0??
j0.9?1.4158j0.596?j0.596?j0.715Ika?Ika*?IBⅠ?1.4158?374.903?530.8013A
[习题4-7]
取c相为基准相,由两相断相的计算公式得:
Z1??j0.2?j0.2?j0.3?j0.7 Z2??j0.2?j0.2?j0.3?j0.7 Z0??j0.1?j0.6?j0.5?j1.2
Ec1??EM?EN?j1.26?j1?j0.26
???Ikc1???Ec1?j0.26??0.1
Z1??Z2??Z0?j0.7?j0.7?j1.2??Ic?3Ikc1?0.3
[习题4-8]
(a)将原图等值变换如图所示: 则有
????????Ika?Ikb?Ikc?0???U?kb?U?kc ??????U?ka?U?kb??I?kaZ??????I?ka0?I?ka?I?kb?I?kc?0????????22U?ka0??U?ka1??U?ka2?U?ka0??U?ka1??U?ka2即:?
??????????2?????????(Uka0?Uka1?Uka2)?(Uka0??Uka1??Uka2)??(Ika0?Ika1?I?ka2)Z??????????Uka1?Ea1??Ika1Z1????又有:?U?ka2??I?ka2Z?2?
????U?ka0??I?ka0Z?0??解得:
I?ka1??E?a1?ZZ?2??(?)3Z?1??ZZ?2??(?)3??
I?ka2??I?ka1?(?ZZ?2??(?)3Z)3
复合序网图为:
(b)将原图等值变换如图所示:
所以可得复合序网图为:
(c)
将原图等值变换如图所示:
????U?b?0???所以有:??U?c?0?????U?a?I?a??Z??Z???1???U?a1??U?a2??U?a0??U?a?3?? ?????????I?a1?I?a2?I?a0??Z??Z??3?U?a1?????????????Ua1?Ea1??Ia1Z1?????又因为?Ua2??I?a2Z?2? ????U?a0??I?a0Z?0????所以::I?a1?Z??Z???U?a1(3?Z??ZZ??Z?) ??Z2?Z0?
??Z?2?Z?0??Z??Z????Ua1?Ia1???3Z2?Z?0??(Z?2??Z?0?)(Z??Z)???? Z??Z?????Z2?Z0????3??I?a1???Z?ZZ?Z????????Z?0??Z2?Z?0??Z?2??33????所以得复合序网图为:
[习题4-9]
(a)将原图进行等值变换为:
变换后的网络与[习题4-8(a)]中网络一致,所以可得复合序网为:
(b) 解:
Zb?Zc?Z,Zg?0 所以:Zs?1?Za?2Z? 3Zm?Z?m??1Za??Z??2Z??31?12Za?Z??Z??Z??Z????Za?Z???33???
根据课本上的公式得:
Uka1?ZsIka1?ZmIka2?Z?mIka0???111??Za?2Z?Ika1??Za?Z?Ika2??Za?Z?Ika0 333???1?????Za?Z??Ika1?Ika2?Ika0??ZIka13??Uka2?Z?mIka1?ZsIka2?ZmIka0???111??Za?Z?Ika1??Za?2Z?Ika2??Za?Z?Ika0 333???1?????Za?Z??Ika1?Ika2?Ika0??ZIka23??Uka0?ZmIka1?Z?mIka2?(Zs?3Zg)Ika0???111??Za?Z?Ika1??Za?Z?Ika2??Za?2Z?Ika0 333???1?????Za?Z??Ika1?Ika2?Ika0??ZIka03??所以可得复合序网图为:
(c) 解:
Zb?Zc?Z 所以:Zs??????????1?Za?2Z? 31?Za?Z? 3Zm?Z?m?根据课本上的公式得:
华北电力大学电力系统故障分析第四章答案
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)