第十讲 列方程解应用题
数学是一门具有广泛应用性的科学,我国著名数学家华罗庚先生曾说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学”. 数学应用题的类型很多,比较简单的是方程应用题,又以一元一次方程应用题最为基础,方程应用题种类繁多,以行程问题最为有趣而又多变.
行程问题的三要素是:距离(s)、速度(v)、时间(t),行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.
熟悉相遇问题、追及问题等基本类型的等量关系是解行程问题的基础;而恰当设元、恰当借助直线图辅助分析是解行程问题的技巧.
例题
【例1】 某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地的距离为 千米. (重庆市竞赛题)
思路点拨 等量关系明显,关键是考虑C地所处的位置.
注: 列方程的方法为解应用题提供—般的解题步骤和规范的计算方法,使问题“化难为易”,充分显示了字母代数的优越性,它是算术方法解应用题在字母代数础上的发展.
【例2】 如图,某人沿着边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以72米/分的速度行走,当乙第一次迫上甲时在正方形的( ).
A.AB边上 B.DA边上 C.BC边上 D.CD边上 (安徽省竞赛题)
思路点拨 本例是一个特殊的环形的追及问题,注意甲实际在乙的前面3×90=270(米)处.
【例3】 父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑?步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时开始跑.问父亲能否在100米的终点处超过儿子?并说明理由. (重庆市竞赛题)
思路点拨 把问题转化为追及问题,即比较父亲追上儿子时,儿子跑的路程与50的大小,为了理顺步长、路程的关系,需增设未知数,这是解题的关键.
【例4】 钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分?
(湖北省数学竞赛选拔赛试题)
思路点拨 先画钟表示意图,运用秒针分别与时针、分针所成的角相等建立等量关系,关键是要熟悉与钟表相关的知识.
注: 明确要求将数学开放性问题作为考试的试题,是近一二年的事情,开放题是相对于常规的封闭题而言,封闭题往往条件充分,结论确定,而开放题常常是条件不充分或结论不确
定,思维多向.
解钟表上的行程问题,常用到以下知识:
(1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如与角度联系起来,每一小格对应6°;
(2)分针走一周,时针走
1周,即分针的速度是时针速度的12倍. 12
【例5】 七年级93个同学在4位老师的带领下准备到离学校32千米处的某地进行社会调查,可是只有一辆能坐25人的汽车.为了让大家尽快地到达目的地,决定采用步行与乘车相结合的办法。如果你是这次行动的总指挥,你将怎样安排他们乘车,才能使全体师生花最短的时间到达目的地?最短的时间是多少?(师生步行的速度是5千米/时,汽车的速度是55千米/时,上、下车时间不计.)
思路点拨 人和车同时出发,由车往返接运,如能做到人车同时到达目的地,则时间最短,而实现同时到达目的地的关键在于平等地享用交通工具,这样,各组乘车的路程一样,步行的路程也就一样.
学力训练
1.甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度为每小时17.5千米,乙的速度为每小时15千米,则经过 小时,甲、乙两人相距32.5千米.
2.某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么此人往返一次的平均速度是 千米/小时.
3.汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员揿一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车高山谷的距离是 米. (江苏省竞赛题)
4.现在是4点5分,再过 分钟,分针和时针第一次重合.
5.甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲先用2v的速度到达中点,再用
1v的速度到达B地,则下列结论中正确的是( ). 2A.甲、乙两人同时到达B地 B.甲先到B地 C.乙先到B地 D.无法确定谁先到
6.甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达( ).
A.31层 B.30层 C.29层 D.28层
7.小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况,你能确定小明在12:00时看到的里程表上的数吗?
8.如图,是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发后,步行速度与在景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由.(不考虑其他因素).
(江西省中考题)
9.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少? (湖北省孝感市竞赛题) 10..甲、乙两列客车的长分别为150米和200米,它们相向行驶在乎行的轨道上, 已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是 秒. (“希望杯”邀请赛试题)
11.甲、乙两地相距70千米,有两辆汽车同时从两地相向出发,并连续往返于甲、乙两地,从甲地开出的为第一辆汽车,每小时行30千米,从乙地开出的汽车为第二辆汽车,每小时行40千米,当从甲地开出的第一辆汽车第二次从甲地出发后与第二辆汽车相遇,这两辆汽车分别行驶了 千米和 千米. (武汉市选拔赛试题)
12.某商场有一部自动扶梯匀速由下而上运动,甲、乙两人都急于上楼办事,因此列车的错车问题有别于两人之间的相遇或追及问题(为什么?)解题的关键是将原问题转化为直线上的两人相遇或追及问题.在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登楼级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上自动扶梯级数为 . (北京市竞赛题)
13.博文中学学生郊游,沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得从车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒,如果队伍长500米,那么火车长为( )米.
A.2075 B.1575 C.2000 D. 1500 (“五羊杯”邀请赛试题) 14.上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是( ).
A.9时30分 B.10时5分 C.10时5 ( “希望杯”邀请赛试题)
58分 D.9时32分 1111