第2章 “控制系统的状态空间描述”习题解答
系统的结构如图所示。以图中所标记的x1、x2、x3作为状态变量,推导其状态空间表达式。其中,u、y分别为系统的输入、输出,?1、?2、?3均为标量。
du32x31x2+1/sa3x3+1/sa2x2+x11/sa1+x1y 图系统结构图
解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。
着眼于求和点①、②、③,则有
???①:x1??1x1?x2 ②: x2??2x2?x3③:x3??3x3?u
输出y为y?x1?du,得
&?x?a11??x???0&2????&??3??x?01a200??x1??0??x???0?u 1???2???a3????x3????1???x1???du
y??100??x2????x3??????u??????y??y?4y?5y?3u;(2) 2?y?3y?u; 已知系统的微分方程 (1) ???????y?2?y?3y?5y?5?u?7u。试列写出它们的状态空间表达式。 (3) ?&?x2,&&y?x3,则有: (1) 解 选择状态变量y?x1,y
&?x1?x2?x?&2?x3 ?&?x3??5x1?4x2?x3?3u??y?x1&?x?010??x1??0?1??x???001??x???0?u&?2????2????&??3??x??5?4?1????x3????3??状态空间表达式为:
?x1??y??100??x?2???x3??(2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件
下取拉氏变换得:
2s3Y(s)?3sY(s)?s2U(s)?U(s)121s? Y(s)s2?12?3?2U(s)2s?3ss3?3s2由公式、可直接求得系统状态空间表达式为
???010??x1??0?&?x1??x???001??x???0?u &??2????2?????&???3x3?1?3??x????0?0???2??1y????20?x1?1???x2? ?2????x3??(3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件
下取拉氏变换得:
s3Y(s)?2s2Y(s)?3sY(s)?5Y(s)?5s3U(s)?7U(s)
Y(s)5s3?7?3 2U(s)s?2s?3s?5在用传递函数求系统的状态空间表达式时,一定要注意传递函数是否为严格真有理分式,即m是否小于n,若m?n需作如下处理
Y(s)5s3?7?10s2?15s?18??5?3 U(s)s3?2s2?3s?5s?2s2?3s?5再由公式、可直接求得系统状态空间表达式为
&?x?010??x1??0?1??x???001??x???0?u &2?????2????&??3??x??5?3?2????x3????1???x1??? y??100?x2?5u ????x3?? 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状态变量图。
s3?s?1s2?2s?3(1)g(s)?3 (2)g(s)?3 22s?6s?11s?6s?2s?3s?1(1) 解
首先将传函(1)化为严格真有理式即:
Y(s)?6s2?10s?5g(s)??1?3?1?g?(s)
U(s)s?6s2?11s?6令g?(s)?Y?(s),则有 ?U(s)?6s?1?10s?2?5s?3Y?(s)?U?(s), ?1?2?31?6s?11s?6sE?(s)?U?(s)即:
1,
1?6s?1?11s?2?6s?3E?(s)?U(s)?6s?1E(s)?11s?2E(s)?6s?3E(s)Y?(s)??6sE(s)?10sE(s)?5sE(s)由上式可得状态变量图如下:
?1?2?3
u+++e-6x3x2x1++y-11-6
由状态变量图或公式、直接求得能控标准型状态空间表达式
&10??x1??0??x?01??x???0??x???0?u &012?????2????&??3??x??6?11?6????x3????1???x1???u
y=?-6-11-6??x?2???x3??(2) 解 由已知得:
s?1?2s?2?3s?3Y(s)?U(s), ?1?2?31?2s?3s?s令: E(s)?U(s)1,
1?2s?1?3s?2?s?3?2?3得: 状态变量图如下:
E(s)?U(s)?2s?1E(s)?3s?2E(s)?s?3E(s)Y(s)?sE(s)?2sE(s)?3sE(s)?1
2u3x2x++ex13+++-2-3-1状态表达式如下:
??x&1???&?010??x1??0?x?2???001????x?2??0?u ??x&3?????????1?3?2???x3????1???x1?y??321???x?2??
?x3??
列写图所示系统的状态空间表达式。
u1cy1-s?au2-dy2s?b 图
解 设 x1(s)?y1(s) (7) ; x2(s)?y2(s) (8) 则由系统方框图P2.10可得:xc1(s)??u1(s)?x2(s)?s?a (9)xd2(s)??u2(s)?x1(s)?s?b (10)y
答案控制系统的状态空间描述习题解答



