好文档 - 专业文书写作范文服务资料分享网站

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.

(1)如图(2),若α=90°,β=30°,求∠MON;

(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示); (3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.

【答案】 (1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30° ∴∠MOB=∠AOB=45° ∠NOD=∠BOC=15°

∴∠MON=∠MOB+∠NOD=45°+15°=60°. (2)解:设∠BOD=γ,∵∠MOD= ∴∠MON=∠MOD+∠NOB-∠DOB=

= +

,∠NOB= -γ=

=

(3)解:①

为定值 ,

设运动时间为t秒,则∠DOB=3t-t=2t, ∠DOE= ∠DOB=t, ∴∠COE=β+t,

∠AOD=α+2t,又∵α=2β, ∴∠AOD=2β+2t=2(β+t). ∴

【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。

(2)设∠BOD=γ,利用角平分线的定义,分别表示出∠MOD和∠NOB,再利用

∠MON=∠MOD+∠NOB-∠DOB,可求出结果。

(3)设运动时间为t秒,用含t的代数式分别表示出∠DOB、∠COE、∠AOD,再求出∠COE和∠AOD的比值。

2.探究与发现:

(1)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?

已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系为:________(直接写出结果).

(2)探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图2,在△ADC中,DP,CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系为:________(直接写出结果).

(3)探究三:若将△ADC改为任意四边形ABCD呢?

已知:如图3,在四边形ABCD中,DP,CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系. 【答案】 (1)∠FDC+∠ECD=∠A+180°

∠A

(2)∠P=90°+

(3)解:∵DP、CP分别平分∠ADC和∠BCD,

【解析】【解答】(1)探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,

故答案为:

( 2 )探究二:∵DP、CP分别平分∠ADC和∠ACD,

故答案为:

【分析】(1)由三角形的一个外角等于和它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再将两个等式两边分别相加并运用三角形的内角和定理即可求解;

(2)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,再结合三角形的内角和定理即可求解;

(3)由角平分线的定义可得∠PDC=∠ADC,∠PCD=∠BCD,再结合三角形的内角和定理和四边形的内角和定理即可求解。

3.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.

(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点; 又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;

(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?

【答案】 (1)不是;是

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]

人教版七年级上册数学全册单元试卷中考真题汇编[解析版]一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;
推荐度:
点击下载文档文档为doc格式
70hjm5b4x29kcek7hm3l8mqar1rud1013g7
领取福利

微信扫码领取福利

微信扫码分享