好文档 - 专业文书写作范文服务资料分享网站

哈佛大学博弈论讲义3

天下 分享 时间: 加入收藏 我要投稿 点赞

LectureIII:NormalFormGames,RationalityandIteratedDeletionofDominatedStrategies

MarkusM.M¨obiusFebruary19,2004

Readings:

?Gibbons,sections1.1.Aand1.1.B?Osborne,sections2.1-2.5andsection2.9

1De?nitionofNormalFormGame

Gametheorycanberegardedasamulti-agentdecisionproblem.It’suseful

tode?ne?rstexactlywhatwemeanbyagame.

Everynormalform(strategicform)gamehasthefollowingingredients.1.ThereisalistofplayersD={1,2,..,I}.Wemostlyconsidergameswithjusttwoplayers.AsanexampleconsidertwopeoplewhowanttomeetinNewYork.2.EachplayericanchooseactionsfromastrategysetSi.Tocontinueourexample,eachoftheplayershastheoptiontogotheEmpireStatebuildingormeetattheoldoaktreeinCentralPark(whereeverthatis...).SothestrategysetsofbothplayersareS1=S2={E,C}.3.Theoutcomeofthegameisde?nedbythe’strategypro?le’whichconsistsofallstrategieschosenbytheindividualplayers.Forexample,inourgametherearefourpossibleoutcomes-bothplayersmeetattheEmpirestatebuilding(E,E),theymiscoordinate,(E,C)and(C,E),or

1

theymeetinCentralPark(C,C).Mathematically,thesetofstrategypro?les(oroutcomesofthegame)isde?nedas

S=S1×S2

Inourcase,Shasorder4.Ifplayer1cantake5possibleactions,andplayer2cantake10possibleactions,thesetofpro?leshasorder50.4.Playershavepreferencesovertheoutcomesoftheplay.Youshouldrealizethatplayerscannothavepreferencesovertheactions.Inagamemypayo?dependsonyouraction.InourNewYorkgameplayersjustwanttobeabletomeetatthesamespot.Theydon’tcareiftheymeetattheEmpireStatebuildingoratCentralPark.IftheychooseEandtheotherplayerdoesso,too,?ne!IftheychooseEbuttheotherplayerchoosesC,thentheyareunhappy.Sowhatmatterstoplayersareoutcomes,notactions(ofcoursetheiractionsin?uencetheoutcome-butforeachactiontheremightbemanypossibleoutcomes-inourexampletherearetwopossibleoutcomesperaction).Recall,thatwecanrepresentpreferencesoveroutcomesthroughautilityfunction.Mathematically,preferencesoveroutcomesarede?nedas:

ui:S→R

Inourexample,ui=1ifbothagentschoosethesameaction,and0otherwise.

Allthisinformationcanbeconvenientlyexpressedinagamematrixasshownin?gure1:

Amoreformalde?nitionofagameisgivenbelow:De?nition1Anormal(strategic)formgameGconsistsof?A?nitesetofagentsD={1,2,..,I}.?StrategysetsS1,S2,..,SI

?Payo?functionsui:S1×S2×..SI→R(i=1,2,..,n)

We’llwriteS=S1×S2×..×SIandwecalls∈Sastrategypro?le(s=(s1,s2,..,sI)).Wedenotethestrategychoicesofallplayersexceptplayeriwiths?ifor(s1,s2,..,si?1,si+1,..sI).

2

Figure1:General2by2gameECE1,10,0C0,01,12SomeImportantGames

Wealreadydiscussedcoordinationgames.Theseareinterestinggames,be-causeplayershaveanincentivetoworktogetherratherthanagainsteachother.The?rstgamesanalyzedbygametheoristswerejusttheopposite-zerosumgames,wherethesumofagents’utilitiesineachoutcomesumsuptozero(oraconstant).

2.1Zero-SumGames

Zero-sumgamesaretruegamesofcon?ict.Anygainonmysidecomesattheexpenseofmyopponents.Thinkofdividingupapie.Thesizeofthepiedoesn’tchange-it’sallaboutredistributionofthepiecesbetweentheplayers(taxpolicyisagoodexample).

Thesimplestzerosumgameismatchingpennies.Thisisatwoplayergamewhereplayer1getaDollarfromplayer2ifbothchoosethesameaction,andotherwiselosesaDollar:

HTH1,?1?1,1T?1,11,?13

哈佛大学博弈论讲义3

LectureIII:NormalFormGames,RationalityandIteratedDeletionofDominatedStrategiesMarkusM.M¨obiusFebruary19,2004Readings:?Gibbons,sections1.1.Aand1.1.B?Osborne,sections2.1-2.5andse
推荐度:
点击下载文档文档为doc格式
6zpd0188ik9sc9l3ppnv1xep036fc3019ci
领取福利

微信扫码领取福利

微信扫码分享