好文档 - 专业文书写作范文服务资料分享网站

直角三角形的存在性问题解题策略 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

中考数学压轴题解题策略(3)

直角三角形的存在性问题解题策略

《挑战压轴题·中考数学》的作者马学斌

专题攻略

解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.

一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.

如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.

在平面直角坐标系中,两点间的距离公式常常用到.

怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).

例题解析

例?如图1-1,在△ABC中,AB=AC=10,cos∠B=.D、E为线段BC上的两个动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值.

45

图1-1

【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.

如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点.

45BFBEBFx?35由EF//AC,得,即.所以BF=(x?3). ??BABC10168在Rt△ABH中,AB=10,cos∠B=,所以BH=8.所以BC=16.

图1-2 图1-3 图1-4

..

①如图1-3,当∠BDF=90°时,由cos?B?解方程x?BD44?,得BD?BF. BF5545?(x?3),得x=3. 58BF44?,得BF?BD. BD55②如图1-4,当∠BFD=90°时,由cos?B?解方程x?5815475?x,得x?.

785我们看到,在画示意图时,无须受到△ABC的“限制”,只需要取其确定的∠B. 例?如图2-1,已知A、B是线段MN上的两点,MN?4,MA?1,MB?1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成 △ABC,设AB=x,若△ABC为直角三角形,求x的值.

图2-1

【解析】△ABC的三边长都可以表示出来,AC=1,AB=x,BC=3-x. 如果用斜边进行分类,每条边都可能成为斜边,分三种情况:

①若AC为斜边,则1?x2?(3?x)2,即x2?3x?4?0,此方程无实根.

5(如图2-2). 34③若BC为斜边,则(3?x)2?1?x2,解得x?(如图2-3).

354因此当x?或x?时,△ABC是直角三角形.

33②若AB为斜边,则x2?(3?x)2?1,解得x?

图2-2 图2-3

例?如图3-1,已知在平面直角坐标系中,点A的坐标为(-2, 0),点B是点A关于原点的对称点,P是函数y?2 (x?0)图象上的一点,且△ABP是直角三角形,求点P的坐标.

x

图3-1

【解析】A、B两点是确定的,以线段AB为分类标准,分三种情况.

如果线段AB为直角边,那么过点A画AB的垂线,与第一象限的一支双曲线没有交点;

..

过点B画AB的垂线,有1个交点.

以AB为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.

由题意,得点B的坐标为(2,0),且∠BAP不可能成为直角. ①如图3-2,当∠ABP=90°时,点P的坐标为(2,1).

②方法一:如图3-3,当∠APB=90°时,OP是Rt△APB的斜边上的中线,OP=2. 设P(x,),由OP=4,得x?2

2x24?4.解得x??2.此时P(2,2). 2x

图3-2 图3-3

方法二:由勾股定理,得PA+PB=AB.

2

2

2

解方程(x?2)?()?(x?2)?()?4,得x??2. 方法三:如图3-4,由△AHP∽△PHB,得PH=AH·BH.

2

22x222x22解方程()?(x?2)(x?2),得x??2.

2x2

图3-4 图3-5

这三种解法的方程貌似差异很大,转化为整式方程之后都是(x-2)=0.这个四次方程

2

2

的解是x1=x2=2,x3=x4=?2,它的几何意义就是以AB为直径的圆与双曲线相切于P、

P′两点(如图3-5).

例?如图4-1,已知直线y=kx-6经过点A(1,-4),与x轴相交于点B.若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

..

图4-1

【解析】和例题3一样,过A、B两点分别画AB的垂线,各有1个点Q.

和例题3不同,以AB为直径画圆,圆与y轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.

将A(1,-4)代入y=kx-6,可得k=2.所以y=2x-6,B(3,0). 设OQ的长为m.分三种情况讨论直角三角形ABQ: ①如图4-2,当∠AQB=90°时,△BOQ∽△QHA,解得m=1或m=3.所以Q(0,-1)或(0,-3). ②如图4-3,当∠BAQ=90°时,△QHA∽△AGB,解得m?34?mBOQH.所以?. ?OQHAm1QHAG4?m2.所以??.

HAGB1477.此时Q(0,?).

222mAGBM.所以?. ?GBMQ43③如图4-4,当∠ABQ=90°时,△AGB∽△BMQ,

解得m?33.此时Q(0,).

22

图4-2 图4-3 图4-4

三种情况的直角三角形ABQ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.

已知A(1,-4)、B(3,0),设Q(0, n),那么根据两点间的距离公式可以表示出AB,AQ和

2

2

BQ2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了.

33例?如图5-1,抛物线y??x2?x?3与x轴交于A、B两点(点A在点B的左侧).若

84直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有....三个时,求直线l的解析式.

图5-1

..

【解析】有且只有三个直角三角形ABM是什么意思呢?

过A、B两点分别画AB的垂线,与直线l各有一个交点,那么第三个直角顶点M在哪里?以AB为直径的⊙G与直线l相切于点M啊!

333由y??x2?x?3??(x?4)(x?2),得A(-4, 0)、B(2, 0),直径AB=6.

848如图5-2,连结GM,那么GM⊥l.

在Rt△EGM中,GM=3,GE=5,所以EM=4.因此tan?GEM?3. 43设直线l与y轴交于点C,那么OC=3.所以直线l(直线EC)为y??x?3.

43根据对称性,直线l还可以是y?x?3.

4

图5-2

例?如图6-1,在△ABC中,CA=CB,AB=8,cos?A?4.点D是AB边上的一个动点,

5点E与点A关于直线CD对称,连结CE、DE.

(1)求底边AB上的高;

(2)设CE与AB交于点F,当△ACF为直角三角形时,求AD的长; (3)连结AE,当△ADE是直角三角形时,求AD的长.

图6-1

【解析】这道题目画示意图有技巧的,如果将点D看作主动点,那么CE就是从动线段.反过来画图,点E在以CA为半径的⊙C上,如果把点E看作主动点,再画∠ACE的平分线就产生点D了.

(1)如图6-2,设AB边上的高为CH,那么AH=BH=4. 在Rt△ACH中,AH=4,cos?A?4,所以AC=5,CH=3.

5(2)①如图6-3,当∠AFC=90°时,F是AB的中点,AF=4,CF=3.

..

在Rt△DEF中,EF=CE-CF=2,cos?E?4,所以DE?5.此时AD?DE?5.

522②如图6-4,当∠ACF=90°时,∠ACD=45°,那么△ACD的条件符合“角边角”. 作DG⊥AC,垂足为G.设DG=CG=3m,那么AD=5m,AG=4m. 由CA=5,得7m=5.解得m?5.此时AD?5m?25.

77

图6-2 图6-3 图6-4

(3)因为DA=DE,所以只存在∠ADE=90°的情况.

①如图6-5,当E在AB下方时,根据对称性,知∠CDA=∠CDE=135°,此时△CDH是等腰直角三角形,DH=CH=3.所以AD=AH-DH=1.

②如图6-6,当E在AB上方时,根据对称性,知∠CDA=∠CDE=45°,此时△CDH是等腰直角三角形,DH=CH=3.所以AD=AH+DH=7.

图6-5 图6-6

马学斌wnmaxuebin163. 2015年9月21日星期一 To:《中小学数学·初中版》

市海淀区西三环北路105号(首都师大)数学楼118室,100048

..

直角三角形的存在性问题解题策略 - 图文

中考数学压轴题解题策略(3)直角三角形的存在性问题解题策略《挑战压轴题·中考数学》的作者马学斌专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列
推荐度:
点击下载文档文档为doc格式
6zomb698u29s4tl8lgrm6o2vt5lzqa00cpc
领取福利

微信扫码领取福利

微信扫码分享