好文档 - 专业文书写作范文服务资料分享网站

影响太阳能电池效率因素

天下 分享 时间: 加入收藏 我要投稿 点赞

影响太阳能电池效率因

LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

影响太阳能电池效率因素

时间:2012-08-20来源: 作者:

摘要:提高太阳能电池的光电转换效率一直以来都是太阳能产业发展研究的重点,因而受到广泛的关注。本文主要从材料的微观结构入手,论述了材料的表面结构,内部杂质带量子阱结构,p-n结数目,界面,层错缺陷等因素对光生伏特效应的影响,从而为提高太阳能电池光电转换效率提供可行的理论依据。

关键词:太阳能电池 异质结 量子阱 杂质带 点缺陷 掺杂 0 引言

随着世界经济快速发展,能源问题日益突出,太阳能作为一种优质的可再生清洁能源能在带来巨大经济效益的同时改善环境污染问题。太阳能电池具有安全,环保的优良特性,可应用于日常生活的各个领域,具有可观的发展前景。

太阳能电池利用光电转换技术将光能转变为电能,是获取太阳能的有效方式,Si作为目前太阳能电池主要材料其光吸收率很低,禁带宽度为 ,与最佳光伏响应禁带宽度相差较大。因此,研究结构对光电转换效率的影响非常必要,为今后通过开发新材料新结构及对旧材料改性来提高光电转换效率奠定理论基础。

1 太阳能电池光电转换基本原理

固体样品的电子结构或其他性质存在某种不均匀性或异质性,当光照固体时出现外电压的光生伏特效应【1】。这种不均质固体想接触时,势垒区域产生光激发载流子,内建场将使异号的剩余载流子向相反方向运动,形成电子和空穴在不同区域积累,导致电子结构的突变,形成光电压。

2 影响光生伏特效应的因素

提高光电转换效率主要取决于开路电压,闭路电流和填充因子三个物理量。下面从以下几个影响因素论述其对这三个物理量的影响提高太阳能电池光电转换效率。

梯度掺杂

对于均匀掺杂的p-n结太阳能电池,在p区与n区界面处通过扩散作用产生了自建电场,在厚度很小的耗尽层内,光照时,只在电场区域及附近的电子空穴对守电场力的驱使定向移动形成光电流。其他区域电子空穴对由于无电场力无法分离,激子复合率较大,重新辐射出光子,相当于降低了光子吸收率。 若在n区p区进行梯度掺杂,在同型区域内由于浓度差引起载流子的扩散形成自建电场。指数递增掺杂【2】,且远离耗尽层浓度高,n区静电荷分布随

浓度增大而从负至正,且与耗尽层电场方向一致,有利于光生电子被n区收集,空穴被驱使至p区,减少了载流子的复合从而增大了闭路电流,提高效率。线性递增掺杂,耗尽层外电场强度较小,光生载流子的收集效果不明显,因此闭路电流提高较小。

增加p-n结数目

开路电压V0随反向饱和电流I0的减小而增大,而Eg的增大使I0迅速减小,所以V0随Eg的增加而增加。Eg的增加,太阳光中能量大于Eg的光子数减少,所以闭路电流Is减小,则一定存在着一个最佳的Eg使得能量转换效率最高。

增加p-n结数目相当于电池的串联,多层p-n结电池各层材料应使其各自不同的禁带宽度匹配可见光中不同的频段,增大了电池对光子的响应范围,形成更多的电子空穴对,增加了电池效率。

但这种途径往往受到材料的晶格匹配,化学融合的差异,热膨胀差异的限制,较难同时实现各种化学晶格匹配和最佳禁带宽度材料的生长。

缺陷的影响

材料中载流子的复合所造成的损失也直接决定光电转换效率,其主要由材料中的缺陷程度决定。延长少数载流子的寿命可以减少载流子的复合速度,有助于载流子在p-n结两端长时间较高浓度的积累,导致p区和n区较高的电位差,载流子通过扩散的复合愈加困难,即增大了材料中的开路电压。 对于材料中本证结构不可避免的点缺陷,由于空位的产生或间隙点杂质为电子空穴对的复合提供了能级陷阱,增加了非直接复合的几率从而减小了载流子数目,由电流密度I=nev知光电流减小。但若适当提高材料制备温度,内部点缺陷向晶界或表面扩散,大大减小了材料内部缺陷密度,延长了少数载流子寿命,但表面高浓度的缺陷间隙会使得表面失去光生伏特效应。同时,点缺陷产生的载流子可以在一定程度上弥补载流子因缺陷的复合。

当点缺陷浓度过高时,点缺陷移动形成缺陷线面,产生缺陷能级,大大增加了复合作用,光伏效应剧烈下降。高浓度的线缺陷【3】延生至界面上形成针状,导致内部短路,降低光伏效应效率。

若材料中有固溶第二相【4】,阻止了载流子的迁移,迁移率的下降是电阻率增大,降低了材料的电学性能【5】,短路电流减小。另外,第二相还是很强的复合中心,即显着降低光伏发电效率。但是,第二相有利于改善禁带宽度。

量子阱结构的引入

在p-n结中间结构中掺入势阱杂质,晶格材料作为势垒,形成量子阱结构【6】,增大势垒宽度,导致高频光子吸收增多,光生载流子数目升高。同时由于p-n结中心层高势垒阻止了电子空穴对越过耗尽层内电场的复合,光电流提高,导致效率的提高。这种势阱结构的内部高势垒阻止了表面区光生载流子

6zl1c4mvj67d82u9zjlx7yogl1itcy00ipn
领取福利

微信扫码领取福利

微信扫码分享