(2)过点P(3,0)作直线l的垂线交曲线C于D,E两点(D在x轴上方),求值.
23.[选修4-5:不等式选讲](10分)
设函数f(x)?|x|,g(x)?|2x?2|. (1)解不等式f(x)?g(x);
(2)若2f(x)?g(x)?ax?1对任意x?R恒成立,求实数a的取值范围.
文科数学试卷 第6页(共4页)
11的?PDPE
资阳市高中2016级第一次诊断性考试
文科数学参考答案和评分意见
评分说明:
1. 各阅卷组阅卷前组织阅卷教师细化评分细则。
2. 本解答只给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要
考查内容比照评分参考制定相应的评分细则。
3. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内
容和难度,可视影响程度决定后继部分的给分,但不得超过该正确部分解答得分的一半;如果后继部分的解得有严重错误,就不再给分。 4. 只给整数分。选择题和填空题不给中间分。 一、选择题:本题共12小题,每小题5分,共60分。 1.D 2.A 3.B 4.C 7.B 8.C 9.A 10.C
5.C
11.A
6.D 12.B
二、填空题:本题共4小题,每小题5分,共20分。
???13. 14. 5 15. 16. (?,?1)(0,1)
226三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 (一)必考题:共60分。 17.(12分)
解析:(1)设公差为d,由题
?2a1?d?8,解得a1?3,d?2. ················································ 2分 ?2a?9d?2a?8d?2,?11所以an?2n?1. ··················································································· 4分
n(2) 由(1),an?2n?1,则有Sn?(3?2n?1)?n2?2n.
211111则??(?). Snn(n?2)2nn?211?1?11111所以Tn?[(1?)?(?)?(?)??(?)?(?)]
232435n?1n?1nn?21?11?(1???) 22n?1n?23································································································· 12分 ?. ·418.(12分)
文科数学试卷 第7页(共4页)
解析:(1)因为f(x)是R上的奇函数, 所以f(x)?f(?x)?0恒成立,则2ax2?0.
所以a?0. ·························································································· 6分 ()x?(2)由(1),fx34x?,
4由f(x)≥mx2得x?≥m,
x44由于x?≥2x?=4,当且仅当x?2时,“=”成立.
xx所以实数m的最大值为4. ······································································ 12分 19.(12分)
解析:(1)根据直方图数据,有2?(a?a?2a?0.2?0.2)?1,
解得a?0.025. ··················································································· 2分 设所选样本中树苗的平均高度为X,
图中从左到右六组的频率分别为0.05,0.1,0.2,0.4,0.2,0.05. 则X?20?0.05?22?0.1?24?0.2?26?0.4?28?0.2?30?0.05?25.5(cm). 根据样本估计总体的原理,这批树苗的平均高度的估计值为25.5 cm. ············ 6分 (2)根据直方图可知,样本中优质树苗有120?(0.100?2?0.025?2)?30,列联表如下表所示: 优质树苗 非优质树苗 合计 A试验区 10 60 70 B试验区 20 30 50 合计 30 90 120 ········································································································ 8分
2120(10?30?20?60)可得K2?········································ 10分 ?10.3?10.828. ·
70?50?30?90所以,没有99.9%的把握认为优质树苗与A,B两个试验区有关系. ·············· 12分 20.(12分)
解析:(1)在?ABD中,因AB?2,AD?1,?A?由余弦定理得:
2?, 32π?7, 3所以BD?7, ··················································································· 3分
ABBD再由正弦定理得:, ?sin?ADBsin?ABD2?AB2?AD2?2AB?AD?cos?A?22?12?2?2?1?cos文科数学试卷 第8页(共4页)
所以sin?ADB?AB2321. ············································ 6分 sin?A???BD772(2)由(1)知?ABD的面积为定值,所以当?BCD的面积最大时,四边形ABCD的面积
?取得最大值.在?BCD中,由BD?7,?C?.
2方法1:设CD?m,CB?n,则m2?n2?BD2?7,
7于是7?m2?n2≥2mn,即mn≤,当且仅当m?n时等号成立.
27故?BCD的面积取得最大值. ······························································· 10分
413又?ABD的面积S?ABD?AB?AD?sinA?,
223723+7所以四边形ABCD面积的最大值为. ····································· 12分 +=244方法2:设?DBC??,则BC?BD?cos??7cos?,CD?BD?sin??7sin?,
117所以S?BCD?BC?CD?7cos??7sin??sin2?,
224?7当??时,?BCD的面积取得最大值. ··············································· 10分
4413又?ABD的面积S?ABD?AB?AD?sinA?,
223723+7所以四边形ABCD面积的最大值为. ····································· 12分 +=24421.(12分)
1?2x?a, x1?2x2?3x?1当a?3时,g(x)?f?(x)?3lnx??2x?3,此时g?(x)?(x>0),
x2x1由g?(x)=0有两根x1=,x2=1,可知:
21在x?(0,)上g?(x)<0,g(x)为减函数;
21在x?(,1)上g?(x)>0,g(x)为增函数;
2在x?(1,??)上g?(x)<0,g(x)为减函数. ···················································· 4分
1?2x2?ax?1(2)由(1),gx,g?(x)?, ()f?x()?anl?x?2x?a?x2x①当a≤0时,g?(x)?0,则f?(x)为(1,+∞)上的减函数,
解析:(1)因为f(x)?(ax?1)lnx?x2?1,则g(x)?f?(x)?alnx?所以f?(x)?f?(1)??1?a?0,则f(x)为(1,+∞)上的减函数, 又f(1)?(a?1)ln1?12?1?0,
文科数学试卷 第9页(共4页)
所以f(x)?f(1)?0. ·············································································· 8分
1?2x2?ax?1②当0<a≤1时,由上g(x)?f?(x)?alnx??2x?a,g?(x)?,
x2x令u(x)??2x2?ax?1,则??a2?8?0,于是g?(x)?0恒成立,
所以f?(x)为(1,+∞)上的减函数, 于是f?(x)?f?(1)??1?a?0,
所以f(x)为(1,+∞)的减函数,又f(1)?0, 所以f(x)?f(1)?0,
所以当a≤1,x>1时,f(x)?0.证毕. ···················································· 12分 (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
??a?1,?x?23?at,?解析:(1)由题意得点A的直角坐标为(3,1),将点A代入?得?
?t??3,??y?4?3t,?则直线l的普通方程为y?3x?2. ··························································· 3分 由?sin2??4cos?得?2sin2??4?cos?,即y2?4x.
故曲线C的直角坐标方程为y2?4x. ························································· 5分 ?3x?3?t,??2(2)设直线DE的参数方程为?(t为参数), ?y?1t??2代入y2?4x得t2?83t?163?0. ························································ 7分
设D对应参数为t1,E对应参数为t2.则t1?t2??83,t1t2??163,且t1?0,t2?0.
111111t1?t21············································ 10分 ????????.·
PDPE|t1|t2t1t2t1t2223.[选修4-5:不等式选讲](10分)
解析:(1)不等式f(x)?g(x),即为|2x?2|?|x|.
2222则(2x?2)?x,即(2x?2)?x?0,
2故有(3x?2)(x?2)?0,解得?x?2.
32则所求不等式的解集为(,······························································ 4分 2). ·
3(2)令2f(x)?g(x)?2|x|?|2x?2|
①当x?0时,只需不等式?2x?2x?2?ax?1恒成立,即ax??4x?1,
1若x?0,该不等式恒成立,a?R;若x?0,则a??4?恒成立,此时a??4.
x文科数学试卷 第10页(共4页)
1恒成立,可得a?1. x3③当x?1时,只需不等式2x?2x?2?ax?1恒成立,即a?4?恒成立,可得a?1.
x综上,实数a的取值范围是[?4,1). ························································· 10分
②当0?x?1时,只需不等式2x?2x?2?ax?1恒成立,即a?
文科数学试卷 第11页(共4页)