第十八章极值与条件极值
§1极值与最小二乘法1.求下列函数的极大值点和极小值点:(1)f(x,y)?(x?y?1);(2)f(x,y)?3axy?x?y(a?0);332x2y2(3)f(x,y)?xy1?2?2;ab
(4)f(x,y)?e(x?y?2y);(5)f(x,y)?sinx?cosy?cos(x?y)(0?x,y?(6)f(x,y)?(x?y?1).2222x2?);2?fx(x,y)?2(x?y?1)?0,
解(1)由?解得稳定点为y?x?1.f(x,y)??2(x?y?1)?0,?y而fxx?2,fxy??2,fyy?2.由于D?0,故不能用极值的充分条件判断f是否在稳定点取极值,但由于当y?x?1时,f(x,y)?0,而y?x?1时f(x,y)?0,因而在y?x?1的点处,f(x,y)取极小值也是最小值0.2??fx(x,y)?3ay?3x?0,
(2)由?解出稳定点为(0,0),(a,a).2??fy(x,y)?3ax?3y?0,
在点(0,0),a11?fxx(0,0)?0,a12?fxy(0,0)?3a,a22?fyy(0,0)?0,这时,2D?a11a22?a12??9a2?0,故(0,0)不是极值点.在点(a,a),a11?fxx(a,a)??6a,a12?fxy(a,a)?3a,a22?fyy(a,a)??6a,2D?a11a22?a12?27a2?0,a11??6a?0,故f(x,y)在(a,a)取极大值f(a,a)?a.3?x2y2?fx(x,y)?x(1?2?2)
ab?
(3)令?
x2y2?
?fy(x,y)?y(1?a2?b2)?P1?(0,0),P2?(P5?(?
a3,?b3).a3,b3x2y21?2?2?0,ab1?
xy??0,22aba3,?b322解得稳定点为),P3?(),P4?(?
a3,
b3),在点P1?(0,0),fxx(0,0)?fyy(0,0)?0,fxy(0,0)?1且D?0,故f(x,y)在点P1?(0,0)不取极值.在点P2?(
a3,
b3),有23?4b3aa11?
?4a3a?0,a12??a3b3b3,a22?
且D?a11a22?a12?4?0,2故f(x,y)在点P2?(
,
)取极大值3ab.9在点P3?(
a3,?
),有234b3aa11?
4a3a?0,a12??a3b3b3,a22?
且D?a11a22?a12?4?0,2故f(x,y)在点P3?(
,?
)取极小值?
3ab.9在点P4?(?
a3,
),有23?4b3aa11?
?4a3a?0,a12?a3b3b3,a22?
且D?a11a22?a12?4?0,2故f(x,y)在点P4?(?
,
)取极小值?
3ab.9在点P5?(?
a3,?
),有a11?
?4a3a?0,a12??
a3b323,a22?
?4b3a2?0且D?a11a22?a12?4?0,故f(x,y)在点P5?(?
,?
)取极大值3ab.92x2?1?fx(x,y)?e(1?2x?4y?2y)?0,
(4)令?解得稳定点(,?1).而2x2f(x,y)?2e(1?y)?0,??y111
a11?fxx(,?1)?2e?0,a22?fyy(,?1)?2e?0,a12?fxy(,?1)?0,2221122且D?a11a22?a12?4e?0,所以,f(x,y)在(,?1)取极小值为?e.22(5)令?
?fx(x,y)?cosx?sin(x?y)?0,??解得稳定点为(,).36?fy(x,y)??siny?sin(x?y)?0,
??????3a11?fxx(,)??3?0,a22?fyy(,)??3?0,a12?fxy(,)?,3636362且D?a11a22?a12?
29??3
?0,故f(x,y)在(,)取极大值为3.4362x2?y2?0,x2?y2?0,
解得稳定点为x?y?1上22?f(x,y)?2x(x2?y2?1)
?x(6)令?
22f(x,y)?2y(x?y?1)?y?
的所有点,而P1(0,0)是导数不存在的点.由于f(x,y)在圆周x?y?1上的点取值0,而f(x,y)?0,故f(x,y)在圆周22x2?y2?1上的点取极小值也是最小值0,而在P1(0,0),f(x,y)?(x2?y2?1)2?1?f(0,0),?x2?y2?2,因而P1(0,0)是极大值点,极大值为1.2.已知y?ax?bx?c,观测得一组数据(xi,yi),i?1,2,?,n,利用最小二乘法,求系数a,b,c所满足的三元一次方程组.记f(a,b,c)?
2解?(ax
i?1n2i?bxi?c?yi)2,为求其最小值,分别对a,b,c求偏导数,并令它们等于0,即n?f
?2?(axi2?bxi?c?yi)xi2?0,?ai?1n?f
?2?(axi2?bxi?c?yi)xi?0,?bi?1n?f
?2?(axi2?bxi?c?yi)?0,?ci?1即系数a,b,c所满足的三元一次方程组为nnn?n4322ax?bx?cx?xyi,????iiii?
i?1i?1i?1?i?1nnn?n32?a?xi?b?xi?c?xi??xiyi,
i?1i?1i?1?i?1nn?n2?a?xi?b?xi?cn??yi.
i?1i?1?i?13.已知平面上n个点的坐标分别是A1(x1,y1),A2(x2,y2),?,An(xn,yn),试求一点,使它与这n个点距离的平方和最小.解设平面点为P(x,y),则它到n个点距离的平方和为f(x,y)??[(x?xi)2?(y?yi)2],i?1n由函数极值的条件得,nn?f?f?2?(x?xi)?0,?2?(y?yi)?0,?x?yi?1i?11n1n得稳定点(?xi,?yi)?(x,y).由于实际问题有最小值,而稳定点又唯一,故稳定ni?1ni?1点即为最小值点.因而点(x,y)与这n个点距离的平方和最小.4.求下列函数在指定范围D内的最大值和最小值:(1)f(x,y)?x?y,D?(x,y)x?y?4;(2)f(x,y)?x?xy?y,D?(x,y)x?y?1;(3)f(x,y,z)?(ax?by?cz)e
?(x2?y2?z2)2222?22???,其中a?b?c?0,D?R.2223解(1)令?
?fx(x,y)?2x?0,?fy(x,y)?2y?0,
解得D内的唯一稳定点(0,0).又因为,a11?fxx(0,0)?2?0,a22?fyy(0,0)??2?0,a12?fxy(0,0)?0,且D?a11a22?a12??4?0,故在(0,0)点,f(x,y)达不到极值,在边界x?y?4上,222f(x,y)?x2?y2?x2?(4?x2)?2(x2?2)??(x),x?2,令??(x)?4x?0,得唯一的稳定点x?0,且???(x)?4?0,故?(x)在x?0取极小值,这就是函数f(x,y)的最小值,其值为f(0,?2)??4,在边界点x??2时y?0,f(?2,0)?4,即函数在(?2,0)取最大值4.(2)令?
?fx(x,y)?2x?y?0,
解得唯一的稳定点(0,0),从而由f(x,y)?2y?x?0,?ya11?fxx(0,0)?2?0,a22?fyy(0,0)?2?0,a12?fxy(0,0)??1,且D?a11a22?a12?5?0故(0,0)是f(x,y)的极小值点,也是最小值点,最小值为2f(0,0)?0.而在边界x?y?1上,在y?1?x,0?x?1,3232x)?x,241111
在x?0或x?1取最大值f(1,0)?f(0,1)?1,在x?取最小值f(,)?.2224f(x,y)?(1?
在y?1?x,?1?x?0,f(x,y)?x2?x?1,在x?0或x??1取最大值f(?1,0)?f(0,1)?1,在x?
在y??1?x,0?x?1,1113
取最小值f(?,)?.2224f(x,y)?x2?x?1,在x?0或x??1取最大值f(?1,0)?f(0,?1)?1,在x??
1111
取最小值f(?,?)?.2224总之,在D上,f(x,y)取最小值f(0,0)?0,取最大值1.(3)令