Now similar concerns are being raised by the giants(巨头)that deal in data, the oil of the digital age. The most valuable firms are Google,Amazon, Facebook and Microsoft. All look unstoppable.蝴蝶谷吸引了大批中外游客。人们一到这里,立刻就会被成群的蝴蝶团团围住。你看,蝴蝶那翩翩起舞的样子,多么像在欢迎前来参观的客人呀!3.2.1 直线的方向向量与直线的向量方程
课后导练
基础达标
1.已知A(1,1,0),
=(4,0,2),点B的坐标为( )
A.(7,-1,4) B.(9,1,4) C.(3,1,1) D.(1,-1,1) 答案:B 2.
=(-1,2,3),
=(l,m,n),
=(0,-1,4),则
等于( )
A.(-1+l,1+m,7+n) B.(1-l,-1-m,-7-n)
C.(1-l,1-m,7-n) D.(-1+l,-1+m,-7+n) 答案:B
3.若a=(0,1,-1),b=(1,1,0),且(a+λb)⊥a,则实数λ的值是( ) A.-1 B.0 C.1 D.-2 答案:D
4.已知a=(-3,2,5),b=(1,x,-1),且a·b=2,则x的值为( )
A.3 B.4 C.5 D.6 答案:C
5.已知向量a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是( ) A.1 B.
C.
D.
答案:D
2
6.若a=(x,2,0),b=(3,2-x,x),且a与b的夹角为钝角,则x的取值范围是( ) A.x<-4 B.-4
7.已知A(-1,2,3),B(3,4,4),C(1,2,3),若ABCD为平行四边形,则D点的坐标为(只求一个点)__________________. 答案:(5,4,4) 8.已知
=(1,1,0),
,
·
取最小值时,求
=(4,1,0),
=(4,5,-1),则向量
与
的夹角为________.
答案:arccos
9.已知A(1,2,3),B(2,1,2),P(1,1,2),点Q在直线OP上运动,当点Q的坐标. 解析:设OQ=λ则
=(λ,λ,2λ),
=(1-λ,2-λ,3-2λ), =(2-λ,1-λ,2-2λ),
∴·=6λ-6λ+10=6(λ-
2
)-
2
.
Now similar concerns are being raised by the giants(巨头)that deal in data, the oil of the digital age. The most valuable firms are Google,Amazon, Facebook and Microsoft. All look unstoppable.蝴蝶谷吸引了大批中外游客。人们一到这里,立刻就会被成群的蝴蝶团团围住。你看,蝴蝶那翩翩起舞的样子,多么像在欢迎前来参观的客人呀!当λ=此时即Q(
时,有最小值-=(,
,,
,).
, ),
10.已知四边形ABCD的顶点分别为A(3,-1,2)、B(1,2,-1)、C(-1,1,-3)、D(3,-5,3).
试证明:它是一个梯形. 解析:∵
=(1,2,-1)-(3,-1,2)=(-2,3,-3),
=(3,-5,3)-(-1,1,-3)=(4,-6,6), ∴∴又由∴|
=(4,-6,6)=-2(-2,3,-3)=-2与=-2|≠|
共线. 知||,
|=2|
|,
.
∴AB与CD平行,且|AB|≠|CD|. 又∵
=(3,-5,3)-(3,-1,2)=(0,-4,1),
=(-1,1,-3)-(1,2,-1)=(-2,-1,-2). 显然
与
不平行.∴四边形ABCD为梯形.
综合运用 11.若
=(a,3,4a-1),
=(2-3a,2a+1,3),M是线段AB的中点,则|
|的最小值是…
( ) A.
B.
C.6 D.
答案:D
12.设a=(a1,a2,a3),b=(b1,b2,b3),若a≠b,且记|a-b|=m,则a-b与x轴正方向的夹角的余弦为( ) A.
B.
C.答案:A
D.±
Now similar concerns are being raised by the giants(巨头)that deal in data, the oil of the digital age. The most valuable firms are Google,Amazon, Facebook and Microsoft. All look unstoppable.蝴蝶谷吸引了大批中外游客。人们一到这里,立刻就会被成群的蝴蝶团团围住。你看,蝴蝶那翩翩起舞的样子,多么像在欢迎前来参观的客人呀!13.设正四棱锥S—P1P2P3P4的所有棱长均为a,并且满足顶点S在Oz轴上,底面在xOy平面上,棱P1P2,P1P4分别垂直于Oy轴和Ox轴,试求点S、P1、P2、P3和P4的直角坐标. 解析:由题意可知,正四棱锥S—P1P2P3P4,如右图所示,其中O为底面正方形的中心,P1P2⊥Oy轴.P1P4⊥Ox轴,SO在Oz轴上,∵P1P2=a.而P1、P2、P3、P4均在xOy平面上.∴P1(
,
,0),P2(-,
,0).
P3与P1关于原点O对称,P4与P2关于原点O对称. ∴P3(-,-,0),P4(
,-,0).
又∵SP1=a,OP1=.
∴在Rt△SOP1中,SO=.
∴S(0,0,).
拓展研究
14.在正方体ABCD—A1B1C1D1中,E、F分别是BB1、D1B1的中点. 求证:EF⊥平面B1AC.
证明:设正方体的棱长为2,建立如右图所示的直角坐标系,则A(2,0,0),C(0,2,0),
B1(2,2,2),E(2,2,1), F(1,1,2). ∴
=(1,1,2)-(2,2,1)
=(-1,-1,1),
=(2,2,2)-(2,0,0)=(0,2,2), =(0,2,0)-(2,0,0)=(-2,2,0).