27. ......................................................................................................................... 6分
(2)令Sn=a1+a4+a7+…+a3n-2. 由
(1)
知
a3n
-
2
=-6n+
31,............................................................................................................ 9分
故{a3n-2}是首项为25,公差为-6的等差数列. 从
而
Sn
=
n2
(a1
+
a3n
-
2
)=
n2
·(-6n+56)=-3n
2
+
28n. ................................................................ 12分
19.(1)证明:在?ABC中,QAB?AC?BC,
222?AC?AB,.........................................................................
................................ 2分
又QA1B?AC且A1B、AC是面ABB1A1内的两条相交直线,
?AC?平面ABB1A1,又AA1?平面ABB1A1,
?AA1?AC;..........................................................................
................................ 4分
222(2)在?ABC中,QA1B?AB?AA1,?A1B?AB,又QA1B?AC且AB、AC是面ABC内的
两条相交直线,?A1B?面ABC,................................................. 8分
由(1)知,AA1?AC,?s?A1AC?1?5?13, 21Qs?ABC??5?12,设点B到面ACC1A1的距离为h,
2由VB?A1AC?VA1?ABC得,(?5?12)?5?11321160(?5?13)?h,解得h?, 3213?点B到面ACC1A1的距离为
60....................................................................... 12分 13用其它方法可参考给分.
20.(1)设M的坐标为(x,y),P,P的坐标为(xp,yp), 由已知得
?xp?x,??5................................................................................yp?y,??4......................... 2分
x2y252??1.................................... QP在圆上,?x?(y)?25,即C的方程为
251642
4分
(2)过点(3,0)且斜率为
44 的直线方程为y?(x?3),设直线与C的交点为 55x2(x?3)24A(x1,y1),B(x2,y2),将直线方程y?(x?3)代入C的方程,得??1,
25255即
x2?3x?8?0.............................................................................
......................... 8分
?x1?x2?41. ? ?
AB?(x1?x2)2?(y1?y2)2?(1?16)(x1?x2)225 ?4141?41?...................................................................255............................. 12分 21.解:(1)f(x)?lnx?2a(x?1)
'当a?1时,2f'(x)?lnx?(x?1)........................................................................
2分
令g(x)?lnx?(x?1),则
g'(x)?11?x?1?................................................. 4分 xxx?(0,1)时g'(x)>0;x?(1,??)时g'(x)<0.
?g(x)?g(1)?0,即f'(x)?0(只在x?1处取等号)
?f(x)的单减区间是
(0,??);............................................................................ 6分
(2)f(x)?lnx?2a(x?1),
令f(x)?0,则lnx?2a(x?1)且函数lnx在x?1处的切线为
''y?x?1,................................................................................
....................................... 8分
由(1)知,a?1时, f(x)在[1,??)上单减且f(1)?0, 2?f(x)?0,合题意.
当a>
1时,数形结合知,f(x)在[1,??)上仍单减且f(1)?0, 2?f(x)?f(1)?0......................................................................
.......................... 11分
综上:若a?1且x?[1,??),恒有2f(x)?0................................................... 12分
3cossin(2x-2φ)-2
2x-2φ
2
+11+ 2
22.解析: (1)f(x)=
=2分
31?sin(2x-2φ)-cos(2x-2φ)=sin(2x-2φ-).................................... 226∵函数f(x)为偶函数,∴2φ+
??=kπ+,k∈. 62∴φ=
k????+,k∈.又∵0≤φ≤,∴φ=. 2626f(x)
=
sin(2x
-
∴
?3正
周
-
?6期
)=-
cos2x. ..................................................................... 4分
∴
f(x)
的
最
小
为
T
=
2???.......................................................................... 5分 2由2k???≤2x≤2k?,k∈,得k?-
?≤x≤k?,k∈. 2间
为
[
∴f(x)的单调减区
k?-
?2,
k?](k
∈).................................................... 7分
(2)函数f(x)=-cos2x的图像向右平移
?个单位,得到 6g(x)=-cos2(x-分
令2x-
??)的图像,即g(x)=-cos(2x-)................................. 863k?5???=k?+,k∈,∴x?,k∈. ?21232的
对
称
中
心
为
(
∴g(x)
k?5??212,0),k
∈. ......................................................... 10分
23.解:1?x?1<2?-2<x<310,............................................................ 2分
记A?x-2<x<10由题知,B , ... A............................................................................................. 4分
记,f(x)?x?2x?1?m则
2?f(?2)?0,??9?m?0,即? ?2f(10)?0.???81?m?0.22??,B??xx2?2x?1?m2<0
?,
解此不等式组得,
?3?m?3...........................................................................
8分
经检验m??3时上等式组中两不等式的等号不同时成立. ∴m的取值范围是
?3?m?3………….......................................................... 10分
→→→r24.解:(1)∵PA+PB+PC=0,
→→→
又PA+PB+PC=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y), ∴
??6-3x=0,?
?6-3y=0,?
解得
??x=2,?....................................................................................?y=2,?
.......... 2分
即
→
OP
=
(2
,
2)
,
故
|
→OP
|
=
22........................................................................................... 4分
其它方法参考给分. →→→(2)∵OP=mAB+nAC, ∴(x,y)=(m+2n,2m+n),
?x=m+2n,?∴? ??y=2m+n,
两式相减得,m-n=y-x,..................................... 8分 令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1, 故m-n的最大值为1. ...................................... 10分 其它方法参考给分.
【附加15套高考模拟试卷】江苏省南通市2020届高三下学期第二次调研测试数学试题含答案



