好文档 - 专业文书写作范文服务资料分享网站

【附加15套高考模拟试卷】江苏省南通市2020届高三下学期第二次调研测试数学试题含答案

天下 分享 时间: 加入收藏 我要投稿 点赞

27. ......................................................................................................................... 6分

(2)令Sn=a1+a4+a7+…+a3n-2. 由

(1)

a3n

2

=-6n+

31,............................................................................................................ 9分

故{a3n-2}是首项为25,公差为-6的等差数列. 从

Sn

n2

(a1

a3n

2

)=

n2

·(-6n+56)=-3n

2

28n. ................................................................ 12分

19.(1)证明:在?ABC中,QAB?AC?BC,

222?AC?AB,.........................................................................

................................ 2分

又QA1B?AC且A1B、AC是面ABB1A1内的两条相交直线,

?AC?平面ABB1A1,又AA1?平面ABB1A1,

?AA1?AC;..........................................................................

................................ 4分

222(2)在?ABC中,QA1B?AB?AA1,?A1B?AB,又QA1B?AC且AB、AC是面ABC内的

两条相交直线,?A1B?面ABC,................................................. 8分

由(1)知,AA1?AC,?s?A1AC?1?5?13, 21Qs?ABC??5?12,设点B到面ACC1A1的距离为h,

2由VB?A1AC?VA1?ABC得,(?5?12)?5?11321160(?5?13)?h,解得h?, 3213?点B到面ACC1A1的距离为

60....................................................................... 12分 13用其它方法可参考给分.

20.(1)设M的坐标为(x,y),P,P的坐标为(xp,yp), 由已知得

?xp?x,??5................................................................................yp?y,??4......................... 2分

x2y252??1.................................... QP在圆上,?x?(y)?25,即C的方程为

251642

4分

(2)过点(3,0)且斜率为

44 的直线方程为y?(x?3),设直线与C的交点为 55x2(x?3)24A(x1,y1),B(x2,y2),将直线方程y?(x?3)代入C的方程,得??1,

25255即

x2?3x?8?0.............................................................................

......................... 8分

?x1?x2?41. ? ?

AB?(x1?x2)2?(y1?y2)2?(1?16)(x1?x2)225 ?4141?41?...................................................................255............................. 12分 21.解:(1)f(x)?lnx?2a(x?1)

'当a?1时,2f'(x)?lnx?(x?1)........................................................................

2分

令g(x)?lnx?(x?1),则

g'(x)?11?x?1?................................................. 4分 xxx?(0,1)时g'(x)>0;x?(1,??)时g'(x)<0.

?g(x)?g(1)?0,即f'(x)?0(只在x?1处取等号)

?f(x)的单减区间是

(0,??);............................................................................ 6分

(2)f(x)?lnx?2a(x?1),

令f(x)?0,则lnx?2a(x?1)且函数lnx在x?1处的切线为

''y?x?1,................................................................................

....................................... 8分

由(1)知,a?1时, f(x)在[1,??)上单减且f(1)?0, 2?f(x)?0,合题意.

当a>

1时,数形结合知,f(x)在[1,??)上仍单减且f(1)?0, 2?f(x)?f(1)?0......................................................................

.......................... 11分

综上:若a?1且x?[1,??),恒有2f(x)?0................................................... 12分

3cossin(2x-2φ)-2

2x-2φ

2

+11+ 2

22.解析: (1)f(x)=

=2分

31?sin(2x-2φ)-cos(2x-2φ)=sin(2x-2φ-).................................... 226∵函数f(x)为偶函数,∴2φ+

??=kπ+,k∈. 62∴φ=

k????+,k∈.又∵0≤φ≤,∴φ=. 2626f(x)

sin(2x

?3正

?6期

)=-

cos2x. ..................................................................... 4分

f(x)

T

2???.......................................................................... 5分 2由2k???≤2x≤2k?,k∈,得k?-

?≤x≤k?,k∈. 2间

[

∴f(x)的单调减区

k?-

?2,

k?](k

∈).................................................... 7分

(2)函数f(x)=-cos2x的图像向右平移

?个单位,得到 6g(x)=-cos2(x-分

令2x-

??)的图像,即g(x)=-cos(2x-)................................. 863k?5???=k?+,k∈,∴x?,k∈. ?21232的

(

∴g(x)

k?5??212,0),k

∈. ......................................................... 10分

23.解:1?x?1<2?-2<x<310,............................................................ 2分

记A?x-2<x<10由题知,B , ... A............................................................................................. 4分

记,f(x)?x?2x?1?m则

2?f(?2)?0,??9?m?0,即? ?2f(10)?0.???81?m?0.22??,B??xx2?2x?1?m2<0

?,

解此不等式组得,

?3?m?3...........................................................................

8分

经检验m??3时上等式组中两不等式的等号不同时成立. ∴m的取值范围是

?3?m?3………….......................................................... 10分

→→→r24.解:(1)∵PA+PB+PC=0,

→→→

又PA+PB+PC=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y), ∴

??6-3x=0,?

?6-3y=0,?

解得

??x=2,?....................................................................................?y=2,?

.......... 2分

OP

(2

2)

|

→OP

|

22........................................................................................... 4分

其它方法参考给分. →→→(2)∵OP=mAB+nAC, ∴(x,y)=(m+2n,2m+n),

?x=m+2n,?∴? ??y=2m+n,

两式相减得,m-n=y-x,..................................... 8分 令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1, 故m-n的最大值为1. ...................................... 10分 其它方法参考给分.

6y85m0l1s7207lq1bbd16zh7s4eqk601d0s
领取福利

微信扫码领取福利

微信扫码分享