2024年高三数学上期中试卷(附答案)
一、选择题
1.已知等比数列?an?,a1?1,a4?围是( ) A.?,?
231,且a1a2?a2a3?????anan?1?k,则k的取值范8?12?? 23???2?3???12???B.?,???
?1?2??C.?,D.?,???
2.设?ABC的三个内角A, B, C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是 ( ) A.直角三角形
B.等边三角形
C.等腰直角三角形
D.钝角三角形
3.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A.一尺五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸
4.已知等比数列{an}的各项均为正数,且a5a6?a4a7?18,则
log3a1?log3a2?log3a3?????log3a10?( )
A.10
B.12
C.1?log35
D.2?log35
5.设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=( ) A.2
B.-2
C.
1 2D.?1 26.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 ( ) A.10 km
B.3 km
C.105 km
D.107 km
7.在等差数列{an}中,a3?a5?2a10?4,则此数列的前13项的和等于( ) A.16
B.26
C.8
D.13
vv1uuuuuuvuuuvuuu8.已知AB?AC,AB?,AC?t,若P点是VABC所在平面内一点,且
tuuuvuuuvuuuvAB4ACuuuvuuuvAP?uuuv?uuuv,则PB·PC的最大值等于( ). ABACA.13
B.15
C.19
D.21
9.已知{an}为等比数列,a4?a7?2,a5a6??8,则a1?a10?( ) A.7
B.5
C.?5
D.?7
?3x?y?6?x?y?2?0?10.x,y满足约束条件?,若目标函数z?ax?by(a?0,b?0)的最大值为
?x?0??y?012,则A.
23?的最小值为 ( ) abB.25
C.
25 325 6D.5
x?0(k为常数),若目标函数z=x+3y的最大值为8,11.已知x,y满足条件{y?x2x?y?k?0则k=( ) A.-16
B.-6
8C.-
3D.6
12.若x?0,y?0,且( ) A.(?8,1)
C.(??,?1)?(8,??)
21??1,x?2y?m2?7m恒成立,则实数m的取值范围是xyB.(??,?8)?(1,??) D.(?1,8)
二、填空题
13.已知数列?an?、?bn?均为等差数列,且前n项和分别为Sn和Tn,若
Sn3n?2?,Tnn?1a4?_____. 则b414.已知数列?an?的前n项和为Sn,a1?1,a2?2,且对于任意n?1,n?N*,满足
Sn?1?Sn?1?2(Sn?1),则S10的值为__________
15.已知数列?an?是等差数列,若a4?a7?a10?17,
a4?a5?a6?L?a12?a13?a14?77,且ak?13,则k?_________.
16.已知等差数列?an?的前n项Sn有最大值,且________.
a8??1,则当Sn?0时n的最小值为a712??2,a?2b的最小值为_______________. ab18.已知在△ABC中,角A,B,C的对边分别为a,b,c,若a?b?2c,则?C的取值范
17.已知a?0,b?0,围为________
a1?2a2?L?2n?1ann?119.定义Hn?为数列?an?的均值,已知数列?bn?的均值Hn?2,
n记数列?bn?kn?的前n项和是Sn,若Sn?S5对于任意的正整数n恒成立,则实数k的取值范围是________.
20.点D在VABC的边AC上,且CD?3AD,BD?2,sin?ABC3,则?233AB?BC的最大值为______.
三、解答题
21.已知数列{an}满足:an?1?2an?n?1,a1?3.
(1)设数列{bn}满足:bn?an?n,求证:数列{bn}是等比数列; (2)求出数列{an}的通项公式和前n项和Sn.
22.已知{an}是各项均为正数的等比数列,且a1?a2?6,a1a2?a3. (I)求数列{an}通项公式;
(II){bn}为各项非零的等差数列,其前n项和Sn,已知S2n?1?bnbn?1,求数列?和Tn.
23.设等差数列?an?的前n项和为Sn,a2?S2??5,S5??15. (1)求数列?an?的通项公式;
?bn??的前n项a?n?111????. (2)求
a1a2a2a3anan?124.在VABC中,角A,B,C的对边分别为a,b,c,a?(1)若?A?90?,求VABC的面积; (2)若VABC的面积为1?4cosC,b?1. a3,求a,c. 22*25.已知数列?an?的前n项和Sn?pn?qnp,q?R,n?N,且a1?3,S4?24.
??(1)求数列?an?的通项公式;
(2)设bn?2n,求数列?bn?的前n项和Tn.
a26.已知等比数列?an?的各项均为正数,a2?8,a3?a4?48.
(Ⅰ)求数列?an?的通项公式;
(Ⅱ)设bn?log4an.证明:?bn?为等差数列,并求?bn?的前n项和Sn.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
3设等比数列?an?的公比为q,则q?a41?,解得q?1, a182∴an?1, n?12∴anan?1?111??, n?1n2n?1222∴数列{anan?1}是首项为
11,公比为的等比数列,
4211(1?n)4?2(1?1)?2, ∴a1a2?a2a3?????anan?1?2n13431?422 ∴k?.故k的取值范围是[,??).选D.
332.B
解析:B 【解析】 【分析】
先由?ABC的三个内角A, B, C成等差数列,得出B??3,A?C?2? ,又因为sinA、33sinB、sinC成等比数列,所以sin2B?sinA?sinC?,整理计算即可得出答案.
4【详解】
因为?ABC的三个内角A, B, C成等差数列,
所以B??3,A?C?2? , 33 4?? ?又因为sinA、sinB、sinC成等比数列, 所以sinB?sinA?sinC?所以sinA?sin?22?2??2????A??sinA??sincosA?sinAcos33?3???313111???13sin2A?sin2A?sin2A?cos2A??sin?2A???? 424442?3?44即sin?2A???????1 3?又因为0?A?所以A?故选B 【点睛】
2? 3?3
本题考查数列与三角函数的综合,关键在于求得B?化,属于中档题.
?3,A?C?2?,再利用三角公式转33.B
解析:B 【解析】 【分析】
从冬至日起各节气日影长设为?an?,可得?an?为等差数列,根据已知结合前n项和公式和等差中项关系,求出通项公式,即可求解. 【详解】
由题知各节气日影长依次成等差数列,设为?an?,
Sn是其前n项和,则S9?9?a1?a9?2?9a5?85.5尺,
所以a5?9.5尺,由题知a1?a4?a7?3a4?31.5, 所以a4?10.5,所以公差d?a5?a4??1, 所以a12?a5?7d?2.5尺。 故选:B. 【点睛】
本题考查等差数列应用问题,考查等差数列的前n项和与通项公式的基本量运算,属于中档题.
4.A
解析:A 【解析】 【分析】
利用对数运算合并,再利用等比数列?an?的性质求解。 【详解】
因为log3a1?log3a2?log3a3Llog3a10=log3?a1a2a3La10?=log3?a1a10?,
5又a4?a7?a5?a6?a1?a10,由a4?a7?a5?a6?18得a1?a10?9,所以