好文档 - 专业文书写作范文服务资料分享网站

电子信息工程专业英语课文翻译(第3版)说课材料

天下 分享 时间: 加入收藏 我要投稿 点赞

电子信息工程专业英语课文翻译(第3版)

精品资料

电子信息工程专业英语教程第三版

译者:唐亦林

p32

In 1945 H. W. Bode presented a system for analyzing the stability of feedback systems by using graphical methods. Until this time, feedback analysis was done by multiplication and division, so calculation of transfer functions was a time consuming and laborious task. Remember, engineers did not have calculators or computers until the '70s. Bode presented a log technique that transformed the intensely mathematical process of calculating a feedback system's stability into graphical analysis that was simple and perceptive. Feedback system design was still complicated, but it no longer was an art dominated by a few electrical engineers kept in a small dark room. Any electrical engineer could use Bode's methods find the stability of a feedback circuit, so the application of feedback to machines began to grow. There really wasn't much call for electronic feedback design until computers and transducers become of age.

1945年HW伯德提出了一套系统方法,用图形化方法来分析反馈系统的稳定性。在此之前,反馈分析是通过乘法和除法完成的,所以传递函数的计算是一项费时和费力的任务。请记得工程师们在上个世纪70年代之前是没有计算机或者计算器的。伯德提出了一种日志技术,这种技术将计算反馈系统稳定性这种复杂的数学过程转换为简单和直观的图像分析。反馈系统的设计虽然还是很复杂,但它不再是几个电气工程师待在一个小黑屋里的艺术了。任何电气工程师都可以使用伯德的方法找到一个反馈电路的稳定点,因此反馈电路在机器中的应用开始增加。直到计算机和传感器的时代到来之前,反馈电路的设计真的没有太多的要求。

p36

An integrator(Figure 5.1a) is the simplest filter mathematically, and it forms the building block for most modern integrated filters. Consider what we know intuitively about an integrator. If you apply a DC signal at the input (i.e. , zero frequency), the output will describe a linear ramp that grows in amplitude until limited by the power supplies. Ignoring that limitation, the response of an integrator at zero frequency is infinite, which means that it has a pole at zero frequency. (A pole exists at any frequency for which the transfer function’s value becomes infinite.)

仅供学习与交流,如有侵权请联系网站删除 谢谢2

精品资料

从数学公式上讲,积分器(见图2.1a)是最简单的滤波器;它是构成大多数现代集成滤波器的基本模块。我们怎么从直观上理解积分器呢?假设在输入端加上一个直流信号(频率为0),那么在输出端将会出现一个线性斜坡信号,其幅度一直增至电源电压。如果不考虑电源电压对输出信号的限制,积分器在零频率上的响应将是无穷大,这意味着它在零频率点上存在一个极点(在任何使传递函数为无穷大值的频率点上都存在一个极点)。

p38

While the complex frequency’s imaginary part (jw) helps describe a response to AC signals, the real part (q) helps describe a circuit’s transient response. Looking at Figure 5.2b, we can therefore say something about the RC low-pass filter’s response. Looking at Figure 5.2b, we can therefore say something about the RC low-pass filter’s response as compared to that of the integrator. The low-pass filter’s transient response is more stable, because its pole is in the negative-real half of the complex plane. That is, the low-pass filter makes a decaying-exponential response to a step-function input; the integrator makes an infinite response. For the low-pass filter, pole positions further down the -? axis mean a higher ?0, a shorter time constant, and therefore a quicker transient response. Conversely, a pole closer to the j axis causes a longer transient response.

复频率的虚部有助于描述电路对交流信号的响应,而其实部有助于描述电路的瞬态响应。从图2.2b中可以看出,RC低通滤波器的响应和积分器之间的一些区别。低通滤波器的瞬态响应更加稳定,因为其极点位于复平面的左半部。即对于阶跃函数输入,滤波器的响应是衰减指数形式的;积分器的响应是无穷大的。对于低通滤波器而言,极点沿?坐标轴离原点越远,意味着?0越大,时间常数越短,瞬态响应越快。相反的情况是:极点离?j坐标轴越近,瞬态响应越慢。

p47

The converter is essentially a highly over-sampling 1-bit ADC (the comparator) followed by digital filtering and decimation to realize the processing gain. The

effective performance of the converter is greatly enhanced by the addition of circuitry

仅供学习与交流,如有侵权请联系网站删除 谢谢3

精品资料

to shape the quantization noise such that, instead of being uniformly spread

throughout the 0 to fs/2 band, it is minimized in the band of interest (Figure 6.5).

这个转换器实质上是一个后跟数字滤波和抽取、高过采样率的1位模数转换器(即比较器),用来实现处理增益。通过另外增加一个噪声整形电路去整型量化噪声,该转换器的有效性能获得了极大的提高。噪声整形电路将原来在0~1/2sf频带内均匀分布的噪声最大限度地从有用频带中去除(见图6.5)。 p62

The buck converter is capable of kilowatts of output power, but suffers from one serious shortcoming which would occur if the power switch were to fail short-circuited, the input power source is connected directly to the load circuitry with usually produces catastrophic results. To avoid this situation, a crowbar is placed across the output. A crowbar is a latching SCR which is fired when the output is sensed as entering an overvoltage condition. The buck converter should only be used for board-level regulation.

降压变压器可以产生上千瓦的输出功率,但它有个致命的缺陷,当开关电源发生短路时,输入电源会直接连接到负载电路上,这会导致可怕的后果。为了避免这种情况,要在输出端加上一个断路器。这个电路是一个闭合的可控硅整流器,当输出端被检测到一个过高的电压时,它就被触发工作了。降压型变换器只适合于板级调节。 p70

Clock Driver Skew (Intrinsic Skew) is the amount of skew caused by the clock driver itself. There are two kinds of clock driver devices; buffer devices and PLL-based devices. Skew occurs on the output of the buffer devices because of the

differences in propagation delay of the input signal through the device. A majority of this difference is attributed to differences in output loading. Skew in PLL-based devices can be very small, since a PLL-based device can be adjusted to compensate for differences in output loading.

时钟驱动器偏移(固有偏移)是由时钟驱动器自己引起的偏移。有两种类型的时钟驱动设备,缓存器件和基于锁相环的器件。偏移发生在缓冲器件的输出端,因为输入信号通过器件时,其传播延迟有差异。造成这种差异的主要原

仅供学习与交流,如有侵权请联系网站删除 谢谢4

精品资料

有是输出负载的不同。基于锁相环的器件的偏斜可以是非常小的,因为锁相环器件可以被调节,以补偿输出负载的差异。

p71

Why is skew important? In high-speed systems, clock skew forms an important component of timing margin. A skew of 1 ns is a significant portion of a 15-ns cycle time. If the timing budget does not allow for skew, it is highly likely that the system will perform unreliably.

为什么偏移这么重要?在高速系统中,时钟偏移是时序富裕量的重要组成部分。在一个以15纳秒为周期的时间里,1纳秒的偏移都是很显著的部分。如果时序预算不允许偏移,系统很可能无法稳定运行。

p75

In today's designs, with clock rates over 100 MHz and rise times commonly 1 nanosecond (ns) or less, designers cannot ignore the role interconnections play in a logic design. Interconnect effects can play a significant part in the timing and noise characteristics of a circuit. The faster clock rates and rise times increase both

capacitive and inductive coupling effects, which makes crosstalk problems greater. They also mean shorter time for reflections to decay before the data is clocked and read, which decreases the maximum line length that can be used for unterminated systems. This all means that one of the major interconnect challenges is to ensure signal integrity as the high-speed pulses move along the total interconnect path, from device to PCB, through the PCB to the backplane, and on out to any network connections which may be present.

在当今的设计中,时钟速率都超过了100MHz,并且上升沿通常只有1纳秒或者更少,设计者不能忽视在逻辑设计中互连的重要性。互连的效果对于一个电路的时序和噪声特性都能够起到很显著的影响。更快的时钟速率和上升沿都将增加电容耦合及电感耦合效应,这使得串扰问题更加严重。这也意味着在数据被写入和读取之前的反射衰减时间更短,它减少了无终端系统中最大的可用线路长度。这一切都意味着,主要的互连挑战之一是确保高速脉冲通过整个互

仅供学习与交流,如有侵权请联系网站删除 谢谢5

电子信息工程专业英语课文翻译(第3版)说课材料

电子信息工程专业英语课文翻译(第3版)精品资料电子信息工程专业英语教程第三版译者:唐亦林p32In1945H.W.Bodepresentedasystemforanalyzingthestabilityoffeedbacksystemsbyusinggrap
推荐度:
点击下载文档文档为doc格式
6y6sd5hhu1423gj8gje700kc5204u900kgx
领取福利

微信扫码领取福利

微信扫码分享