简单的三角恒等变换
建议用时:45分钟
一、选择题
ππ
1.已知sin(6-α)=cos(6+α),则tan α=( ) 1
A.1 B.-1 C.2 D.0 ππ
B [∵sin(6-α)=cos(6+α), 1331
∴2cos α-2sin α=2cos α-2sin α, 3113
即(2-2)sin α=(2-2)cos α, sin α
∴tan α=cos α=-1.] 2.求值:
cos 20°
=( )
cos 35°1-sin 20°
A.1 B.2 C.2 D.3 C [原式= cos 35°|sin 10°-cos 10°|
cos210°-sin210°
cos 10°+sin 10°
cos 35°
cos 20°
=
=cos 35°(cos 10°-sin 10°)22
2(2cos 10°+2sin 10°)
cos 35°
2cos(45°-10°)
cos 35°
=
==2cos 35°cos 35°
=2.]
1
π1π
3.(2019·杭州模拟)若sin(3-α)=4,则cos(3+2α)等于( ) A.-71178 B.-4 C.4 D.8 A [cos(π2
3+2α)=cos[π-(3π-2α)] =-cos(2-2α)=-[1-2sin2(π
3π3-α)] =-[1-2×(12]=-7
4)8.]
4.设α∈(0,ππ
1+sin β2),β∈(0,2),且tan α=cos β,则( ) A.3α-β=π
2 B.2α-β=π
2 C.3α+β=π
2
D.2α+β=π
2
B [由tan α=1+sin βsin α1+sin β
cos β,得cos α=cos β, 即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π
2-α). ∵α∈(0,ππ
2),β∈(0,2),
∴α-β∈(-ππππ
2,2),2-α∈(0,2), 由sin(α-β)=sin(πα),得α-β=π
2-2-α, ∴2α-β=π
2.]
5.若函数f(x)=5cos x+12sin x在x=θ时取得最小值,则cos θ等于(A.5 B.-512121313 C.13 D.-13 B [f(x)=5cos x+12sin x
=13(512
13cos x+13sin x)=13sin(x+α),
2
) 512
其中sin α=13,cos α=13, π
由题意知θ+α=2kπ-2(k∈Z), π
得θ=2kπ-2-α(k∈Z),
ππ
所以cos θ=cos(2kπ-2-α)=cos(2+α) 5
=-sin α=-13.] 二、填空题 6.化简:
2sin(π-α)+sin 2α
=________.
αcos22
2sin(π-α)+sin 2α2sin α+2sin αcos α
4sin α [=1
αcos22
2(1+cos α)=
4sin α(1+cos α)
1+cos α
=4sin α.]
7.已知方程x2+3ax+3a+1=0(a>1)的两根分别为tan α,tan β,且α,β∈(-ππ
2,2),则α+β=________.
??tan α+tan β=-3a,3
-4π [依题意有?
??tan α·tan β=3a+1,∴tan(α+β)=
tan α+tan β1-tan α·tan β
=-3a1-(3a+1)
=1.
??tan α+tan β<0,
又? ??tan α·tan β>0,∴tan α<0且tan β<0, ππ
∴-2<α<0且-2<β<0,
3