好文档 - 专业文书写作范文服务资料分享网站

生物化学重点串讲(5)

天下 分享 时间: 加入收藏 我要投稿 点赞

第六章脂类代谢

二〇一三年十一月二十六日星期二

目标:

1.掌握脂类的结构、生理功能及酶促水解。

2.掌握甘油的氧化、脂肪酸的β-氧化途径;酮体的生成和利用;了解脂肪酸氧化的其他途径。

3.掌握软脂酸合成的部位、原料、途径及关键酶;熟悉脂肪酸链的加长和去饱和;了解脂肪酸代谢的调节。

4.熟悉卵磷脂和脑磷脂的生物合成。

5.熟悉胆固醇合成的部位、原料、过程及其转化。

导入:脂类是人体的重要营养素,分为脂肪和类脂两大类。脂肪的主要功能是储能和供能。类脂包括磷脂、糖脂、胆固醇及其酯,是生物膜的重要组分,参与细胞识别及信息传递,并是多种生理活性物质的前体。体内脂肪酸的来源有二:一是机体自身合成,以脂肪形式储存在脂肪组织中,需要时从脂肪动员。饱和脂酸及单不饱和脂酸主要靠机体自身合成。另一来源系膳食的脂肪供给,特别是某些多不饱和脂酸,动物机体自身不能合成,需从植物油摄取,称为必需脂酸。重点掌握脂肪的分解和合成代谢。

第一节概论 一、脂类

脂肪(fat)又称甘油三酯(triglyceride ,TG)。脂肪细胞是哺乳动物脂肪主要储存处。糖原可在短时间(1h左右)提供用于肌肉收缩的能量,但持续、剧烈地工作,如马拉松选手竞赛、侯鸟持久的飞行和蝗虫迁移,其能量来源依赖TG的代谢。1g脂肪氧化释能37.6 kJ,比等量的糖或蛋白质高出2倍以上。

天然脂肪酸多为偶数C,16C或18C多见;不饱和脂肪酸中的亚油酸、亚麻酸和花生四烯酸是必需脂肪酸。

磷脂按其化学结构分为甘油磷脂和鞘磷脂。

甘油磷脂是生物膜中含量最多的脂类物质,核心结构是甘油-3-磷酸,C1和C2位的羟基被2条脂酰基长链取代(形成疏水尾),C3的磷酸羟基结合各种取代基形成极性头。包括磷脂酰胆碱(卵磷脂,PC)、磷脂酰乙醇胺(脑磷脂,PE)、磷脂酰丝氨酸(PS)、磷脂酰甘油、二磷脂酰甘油(心磷脂)及磷脂酰肌醇(PI)六类,每一类又因组成的脂酸不同而有若干种,红细胞就有100种以上的不同的磷脂。鞘磷脂、脑苷脂和神经节苷脂属鞘脂类,在神经组织和脑内含量较高。不含甘油,由一分子脂肪酸,一分子鞘氨醇或其衍生物,一分子极性头基团组成。

固醇是环戊烷多氢菲的衍生物。胆固醇(cholesterol ,Ch)及胆固醇酯是血浆蛋白和细胞外膜的重要组分。胆固醇可调节生物膜的流动性,同时也是合成胆汁酸、类固醇激素和维生素D等生理活性物质的前体。 二、生物膜

细胞的外周膜和细胞器的内膜系统统称为生物膜。其功能是维持细胞内环境相对稳定的屏障,又是进行物质交换、细胞识别、信息传递的场所,内膜系统使酶区域化分布保证各种生化反应有序进行。膜的基本结构是脂质双分子层,用“流体镶嵌模型”解说。 三、脂类的酶促水解

1.脂肪酶广泛存在于动物、植物和微生物中。在人体内,脂肪的消化主要在小肠,由胰脂肪酶催化,胆汁酸盐和辅脂肪酶的协助使脂肪逐步水解生成脂肪酸和甘油。

2.磷脂酶有多种,作用于磷脂分子不同部位的酯键。作用于1位、2位酯键的分别称为磷脂

酶A1及 A2,生成溶血磷脂和游离脂肪酸。作用于3位的称为磷脂酶C,作用磷酸取代基间酯键的酶称磷脂酶D。作用溶血磷脂1位酯键的酶称磷脂酶B1。 3.胆固醇酯酶水解胆固醇酯生成胆固醇和脂肪酸。

4.小肠可吸收脂类的水解产物。胆汁酸盐帮助乳化,结合载脂蛋白(apoprotein,apo)形成乳糜微粒经肠粘膜细胞吸收进入血循环。所以乳糜微粒(chylomicron,CM)是转运外源性脂类(主要是TG)的脂蛋白。

第二节脂肪的分解代谢

食物中的脂肪通过消化被脂肪酶逐步降解为甘油和游离脂肪酸(FFA),而储存于脂肪细胞中的脂肪通过脂肪动员降解,在脂肪动员中,三酰甘油脂肪酶的活性低,是脂肪动员的限速酶。脂肪分解是生物体利用脂肪作为供能原料的第一个步骤。 一、甘油的氧化

脂肪动员产生的甘油主要在肝细胞经甘油激酶作用生成3-磷酸甘油,再脱氢生成磷酸二羟丙酮后循糖代谢途径分解或经糖异生途径转化成葡萄糖。脂肪细胞及骨骼肌等组织因甘油激酶活性很低,不能很好利用甘油。 二、脂肪酸的氧化分解

脂肪酸不溶于水,在血液中与清蛋白结合后(10:1),运送全身各组织,在组织的线粒体内氧化分解,释放大量的能量,以肝脏和肌肉最为活跃。1904年,Knoop用苯环作标记,追踪脂肪酸在动物体内的转变过程,发现当奇数碳脂肪酸衍生物被降解时,尿中检测出的是马尿酸,如果是偶数碳,尿中排出的是苯乙尿酸。显然脂肪酸酰基链的降解发生在β-碳原子上,即每次从脂酸链上切下一个二碳单位。以后的科学实验证明β-氧化学说是正确的,切下的二碳单位是乙酰CoA,脂肪酸进入线粒体前先被活化。 (一)脂肪酸的活化

在胞液中FFA通过与CoA酯化被激活,催化该反应的酶是脂酰CoA合成酶,需ATP、Mg2+参与。反应产生的PPi立即被焦磷酸酶水解,阻止了逆反应,所以1分子FFA的活化实际上消耗2个高能磷酸键。

RCOOH+ATP+CoASH—→RCO~SCoA+AMP+PPi (二)脂酰CoA进入线粒体

脂肪酸的氧化是在线粒体内进行的, 而脂酰CoA不能自由通过线粒体内膜进入基质, 需耍通过线粒体内膜上肉毒碱转运才能将脂酰基带入线粒体。内膜两侧的脂酰CoA肉毒碱酰基转移酶Ⅰ、Ⅱ(同工酶)催化完成脂酰基的转运和肉毒碱的释放。酶Ⅰ是FFA氧化分解的主要限速酶。

(三)脂酰CoA的β-氧化

脂酰CoA氧化生成乙酰CoA涉及四个基本反应:第一次氧化反应、水化反应、第二次氧化反应和硫解反应。

第一步由脂酰CoA脱氢酶催化脱氢生成反-⊿2-烯脂酰CoA和 FADH2。 第二步由反-⊿2-烯脂酰CoA水化酶催化加水生成L-(+)-β-羟脂酰CoA。 第三步由L-(+)-β-羟脂酰CoA脱氢酶催化生成β-酮脂酰CoA和NADH+H+。

第四步由硫解酶作用底物的α-与β-C间断裂,CoASH参与,生成1分子乙酰CoA和比原来少2个C的脂酰CoA。然后再一轮β-氧化,如此循环反应。 (四)脂肪酸氧化的能量计算

1分子软脂酸(16C)经7次β-氧化可生成8个乙酰CoA、7个NADH2+、7个FADH2。每个乙酰CoA进入TCA循环生成3个NADH2+、1个FADH2、1个GTP,并释放2分子CO2。 总反应方程式是:软脂酰CoA+23O2+131Pi+131ADP→CoASH+16CO2+123H2O+131ATP

净生成的ATP数:12×8+3×7+2×7-2 =129。 (脂肪酸活化消耗2个高能磷酸键,相当消耗2个ATP)

当以脂肪为能源时,生物体还获得大量的水。骆驼的驼峰是储存脂的“仓库”,既提供能量,又提供所需的水。

(五)脂肪酸氧化的其他途径 1. 奇数碳原子脂酸的氧化 人体含极少量奇数碳脂肪酸,而许多植物、海洋生物、石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者可通过β-羧化酶及异构酶的作用生成琥珀酰CoA,经TCA途径彻底氧化。 2. 不饱和脂肪酸的氧化

机体中脂酸约一半以上是不饱和脂肪酸,其中的双键均为顺式(cis)构型,不能被烯脂酰CoA水化酶作用(该酶催化的是反式构型双键的加水),所以需要异构酶和还原酶才能使一般不饱和脂肪酸的氧化进行下去。如油酸是十八碳一烯酸(cis-⊿9),细胞质中的油酸同样先活化生成油酰CoA,经转运系统换成线粒体基质中的油酰CoA,经三轮β-氧化生成3分子乙酰CoA和cis-⊿3-十二碳烯脂酰CoA,后者经异构酶催化为trans-⊿2-十二碳烯脂酰CoA,就可由烯脂酰CoA水化酶作用生成L-β-羟脂酰CoA,再经五轮β-氧化生成6分子乙酰CoA,总计9分子乙酰CoA。

多不饱和脂肪酸的氧化还需一个特殊的还原酶。 三、酮体的生成和利用

脂肪酸经β-氧化生成的大多数乙酰CoA进入TCA循环,当乙酰CoA的量超过TCA循环氧化能力时,多余的生成酮体(ketone bodies),包括β-羟丁酸(占70%)、乙酰乙酸(占30%)和丙酮(微量)。酮体是燃料分子,作为“水溶性的脂”,在心脏和肾脏中比脂肪酸氧化得更快。

(一)酮体是在肝脏中合成的

2分子乙酰CoA经肝细胞线粒体乙酰乙酰CoA硫解酶催化缩合成乙酰乙酰CoA,再在羟甲基戊二酸单酰CoA合成酶(HMG- CoA合成酶)的催化下,结合第三个乙酰CoA生成β-羟基-β-甲基戊二酸单酰CoA。然后HMG- CoA裂解酶催化生成乙酰乙酸和乙酰CoA。(乙酰乙酰CoA也可在硫酯酶催化下水解为乙酰乙酸和CoA) 乙酰乙酸在β-羟丁酸脱氢酶的催化下,由NADH供氢,被还原为β-羟丁酸或脱羧生成丙酮。 (二)酮体的利用

酮体是正常的、有用的代谢物,是很多组织的重要能源。但肝细胞氧化酮体的酶活性很低,因此酮体经血液运输到肝外组织进一步氧化分解。心、肾、脑和骨胳肌线粒体有活性很高的氧化酮体的酶。β-羟丁酸在β-羟丁酸脱氢酶催化下重新脱氢生成乙酰乙酸,在不同肝外组织中乙酰乙酸可在琥珀酰CoA转硫酶或乙酰乙酸硫激酶作用下转变为乙酰乙酰CoA,再由乙酰乙酰CoA硫解酶裂解为2分子乙酰CoA,进入TCA途径彻底氧化。

脑在正常代谢时主要以葡萄糖为能源,但在饥饿和患糖尿病时,也不得不利用乙酰乙酸,长期饥饿时,脑需要的燃料有75%是乙酰乙酸。长期饥饿和糖尿病患者的呼吸中会拌有丙酮的气味(乙酰乙酸脱羧形成)。

正常情况下,血中酮体含量很低,为0.05~0.5mmol/L。在饥饿、高脂低糖膳食和糖尿病时,脂肪动员加强,酮体生成增加,超出肝外组织利用酮体的能力,血中酮体含量升高,造成酮症酸中毒,称为酮血症,若尿中酮体增多则称为酮尿症。

第三节脂肪的合成代谢

人体内的脂肪来源于食物和体内合成,原料涉及3-磷酸甘油的生成和脂肪酸的生物合成。

肝脏、脂肪组织和小肠均可合成脂肪,以肝脏合成能力最强。 一、3-磷酸甘油的生成

糖分解代谢产生的磷酸二羟丙酮经脱氢酶催化还原生成3-磷酸甘油是最主要的来源;脂肪分解产生的甘油主要用于糖异生,很少一部分经脂肪组织外的甘油激酶催化与ATP作用生成3-磷酸甘油。

二、脂肪酸的生物合成

合成脂肪酸的酶系主要在胞浆,而糖代谢提供的乙酰CoA原料又在线粒体生成,所以乙酰CoA需通过转运。合成脂肪酸的过程不同于β-氧化的逆过程,是由7种酶蛋白和酰基载体蛋白(ACP)组成的多酶复合体完成,合成的产物是软脂酸。碳链延长是在线粒体和内质网中的2个不同的酶系催化下进行的。 (一)软脂酸的生物合成

1. 乙酰CoA转运至胞浆(柠檬酸-丙酮酸循环)。

乙酰CoA与草酰乙酸在线粒体先缩合生成柠檬酸,经内膜上的载体转运入胞浆,在ATP-柠檬酸裂解酶作用下生成乙酰CoA与草酰乙酸,前者参与脂肪酸的合成,后者可经苹果酸脱氢酶和苹果酸酶催化转变为丙酮酸再进入线粒体,也可在载体作用下,经苹果酸直接进入线粒体,继而转变为草酰乙酸。

2. 乙酰CoA羧化生成丙二酸单酰CoA

乙酰CoA羧化酶催化,ATP、生物素、Mg2+参与,总反应: 乙酰CoA+ATP+HCO3-——→丙二酸单酰CoA+ADP+Pi

ATP提供能量,生物素起转移羧基的作用,乙酰CoA羧化酶是FA合成的限速酶(变构酶),变构剂柠檬酸与其变构部位结合可激活此酶的活性。 3. 乙酰基和丙二酸单酰基的转移(负载) 脂肪酸合成的酰基载体不是CoA,而是酰基载体蛋白。在乙酰CoA-ACP转酰基酶和丙二酸单酰CoA-ACP转酰基酶的催化下,乙酰基和丙二酸单酰基被转移至ACP上,生成乙酰-ACP和丙二酸单酰-ACP。

4. 脂肪酸合成酶系催化进行缩合、还原、脱水、还原反应。

(1)酮酰基-ACP合成酶接受乙酰-ACP的乙酰基,释放HS-ACP,并催化乙酰基转移到丙二酸单酰-ACP上生成乙酰乙酰-ACP。

(2)乙酰乙酰-ACP中的β-酮基转换为醇,生成β-羟丁酰-ACP。反应由酮酰基-ACP还原酶催化,NADPH为酶的辅酶。

(3)β-羟丁酰-ACP经脱水酶催化生成带双键的反式丁烯酰-ACP。

(4)反式丁烯酰-ACP还原为四碳的丁酰-ACP。反应是由烯脂酰-ACP还原酶催化, NADPH为酶的辅酶。

如此每循环一次,有一个新的丙二酸单酰CoA参与合成(贡献二碳单位),7次循环,生成16C的软脂酰-ACP,经硫解酶水解生成软脂酸和HS-ACP。 哺乳动物脂肪酸氧化和合成的主要区别? (二)脂肪酸碳链的延长

植物和动物中脂肪酸合成酶的最常见的产物是软脂酸。其它各种FA的合成需要肝细胞的线粒体或内质网中的一些酶。 在线粒体,乙酰CoA提供碳源,NADPH提供还原当量,循β-氧化逆过程,前3步反应相同,第4步反应由烯脂酰CoA还原酶催化,辅酶是NADPH而不是FAD,通过这种方式,每一轮可延长2个C,一般可延长碳链至24或26C,以18C的硬脂酸为主。

在内质网,丙二酸单酰CoA提供碳源,NADPH供氢,反应过程与软脂酸合成相似,不同的是CoASH代替ACP作为酰基载体,一般可延长碳链至22或24C,也以18C的硬脂酸为主。

(三)不饱和脂肪酸的合成

动物细胞含有催化不饱和FA双键形成的去饱和酶,可催化远离FA羧基端的第九个碳的去饱和。但九碳以上的去饱和则只有植物中的去饱和酶能催化。如亚油酸(18:2 ⊿9,12)、亚麻酸(18:3⊿9 ,12 ,15)、花生四烯酸(20:4⊿5 ,8 ,11,14)是动物所需的,但动物不能合成,是必须由食物供给的必需脂肪酸。当人体缺乏必需脂肪酸时,会出现生长缓慢、抵抗力下降、皮肤炎和毛发稀疏等症状。亚麻酸和花生四烯酸只能从亚油酸转化生成,花生四烯酸又是合成前列腺素(PG)及血栓素等重要生理活性物质的前体。 (四)脂肪酸代谢的调控

动物的FA代谢受激素的调控,主要调节物是胰岛素,肾上腺素和胰高血糖素的作用与胰岛素相反。

三、脂肪的合成

细胞内的FFA的含量并不多,大多数是以酯化形式三脂酰甘油和磷脂存在。

脂肪合成的前体是甘油-3-磷酸和脂酰CoA。酰基转移酶催化1分子甘油-3-磷酸和2分子脂酰CoA生成磷脂酸,经磷脂酸磷酸酶水解去磷酸生成二脂酰甘油,再由酰基转移酶催化结合1分子脂酰CoA生成三脂酰甘油。

第四节磷脂的生物合成

哺乳动物的所有组织均可合成磷脂。CTP在磷脂合成中特别重要。 一、甘油磷脂的合成

在生理pH下,磷脂酰胆碱与磷脂酰乙醇胺所带的净电荷为零,属于中性磷脂,而磷脂酰肌醇与磷脂酰丝氨酸带有负的净电荷属于酸性磷脂。

磷脂酰胆碱、磷脂酰乙醇胺和三脂酰甘油是通过一个共有途径合成的。

先由甘油-3-磷酸作为酰化反应的骨架与提供酰基的脂酰CoA反应生成磷脂酸,脱磷酸后成二脂酰甘油(DG)。DG直接酰化形成TG或与CDP-胆碱或CDP-乙醇胺反应生成磷脂酰胆碱和磷脂酰乙醇胺。DG是合成的重要中间物。

CDP-胆碱与CDP-乙醇胺是胆碱与乙醇胺在激酶的催化下先生成磷酸胆碱和磷酸乙醇胺,再在转移酶作用下,与CTP反应生成。

磷脂酰乙醇胺可接受S-腺苷蛋氨酸提供的-CH3而转化成磷脂酰胆碱。 磷脂酸是两个酸性磷脂合成的直接前体。磷脂酸与CTP反应生成CDP-二脂酰甘油。在E.coli,CDP-二脂酰甘油与丝氨酸结合生成磷脂酰丝氨酸;在原核生物和真核生物中,与肌醇结合形成磷脂酰肌醇,或与1分子磷脂酰甘油结合生成心磷脂,心磷脂是心肌线粒体内膜的主要磷脂。

在哺乳动物中,磷脂酰丝氨酸是在碱基交换酶的作用下形成的。该酶催化丝氨酸取代磷脂酰乙醇胺中的乙醇胺,反应是可逆的。 二、鞘脂的合成

鞘脂是一类以鞘氨醇为结构骨架的脂,骨架是由软脂酰CoA及丝氨酸为原料合成。鞘氨醇酰化生成N-脂酰鞘氨醇(神经酰胺),再与CDP-胆碱或磷脂酰胆碱形成鞘磷脂,也可与UDP-半乳糖反应生成脑苷脂。

第五节胆固醇的生物合成

机体所需胆固醇主要通过自身合成,仅从食物(内脏、蛋黄、肉类等)摄取少量。 一、合成部位和原料

除脑组织和成熟红细胞外,几乎全身各组织均可合成胆固醇,肝脏的合成能力最强,占总量的3/4以上。

乙酰CoA是起始原料,需ATP供能和NADPH供氢。合成酶系存在于胞液和内质网。 二、合成的基本过程

合成过程复杂,有近30步酶促反应,大致分为三个阶段:

乙酰基(C2)→异戊二烯(C5)→鲨烯(C30)→胆固醇(C27) 1.乙酰CoA合成异戊烯焦磷酸(IPP)

2分子乙酰CoA经硫解酶催化缩合成乙酰乙酰CoA,由HMG- CoA合成酶催化结合1分子乙酰CoA,生成β-羟基-β-甲基戊二酸单酰CoA(HMG- CoA), HMG- CoA还原酶(限速酶)催化其生成甲羟戊酸(MVA),消耗2分子NADPH。甲羟戊酸经磷酸化、脱羧三步酶促反应生成活泼的异戊烯焦磷酸(IPP)。 2.鲨烯的合成

一种异构酶催化异戊烯焦磷酸转换成二甲烯丙基焦磷酸(DPP)。然后它按照头对尾方式与另一分子异戊烯焦磷酸缩合成10C牛龙牛儿焦磷酸。再按头对尾方式与另一分子异戊烯焦磷酸缩合成15C焦磷酸法尼酯(FPP),2分子FPP由鲨烯合成酶催化,仍然按头对尾方式缩合成30C的鲨烯。 3.鲨烯转换为胆固醇

鲨烯转换为胆固醇的过程很复杂,一个中间产物是羊毛固醇,涉及加氧、环化,形成由四个环组成的胆固醇核的反应。而由羊毛固醇到胆固醇还要经过甲基的转移、氧化、脱羧等约20步反应。

三、胆固醇合成的调节和转变

调节胆固醇合成的关键酶是HMG- CoA还原酶。该酶受胆固醇的抑制,同时酶的磷酸化也可调节酶的活性。对于严重的高胆固醇血症,常使用HMG- CoA还原酶的抑制剂,如洛伐他汀。 胆固醇的母核是环戊烷多氢菲,在体内不能被降解,但可以转变成许多具有重要生理功能的固醇类物质。

1.胆汁酸:3/4的胆固醇可在肝脏转变为胆汁酸,随胆汁入肠道,参与脂类的消化吸收。这是胆固醇代谢的主要去路。

2.类固醇激素:胆固醇在肾上腺皮质球状带可转变为肾上腺皮质激素,调节糖、脂、蛋白质代谢;在肾上腺皮质网状带可转变雄激素及少量的雌激素;在睾丸和卵巢组织可经睾酮再转变成二氢睾酮或雌二醇后发挥生理作用。

3.VD3:胆固醇在肠粘膜细胞内可转变为7-脱氢胆固醇(VD3原),经血液运输到皮肤,在紫外线照射下转变成VD3,继而在肝、肾进行两次羟化生成1,25-( O H )2 -D3,调节钙磷代谢。

4.胆固醇酯:在肝、肾上腺皮质和小肠等组织中,胆固醇与脂酰CoA在脂酰CoA胆固醇酰基转移酶(ACAT)作用下,生成胆固醇酯。(胆固醇酯酶可将其水解为胆固醇。)

在血浆中,胆固醇在卵磷脂胆固醇酰基转移酶(LCAT)作用下,接受卵磷脂分子中的脂酰基生成胆固醇酯。

小部分胆固醇可经肠道细菌作用后经肠道排出。

生物化学重点串讲(5)

第六章脂类代谢二〇一三年十一月二十六日星期二目标:1.掌握脂类的结构、生理功能及酶促水解。2.掌握甘油的氧化、脂肪酸的β-氧化途径;酮体的生成和利用;了解脂肪酸氧化的其他途径。3.掌握软脂酸合成的部位、原料、途径及关键酶;熟悉脂肪酸链的加长和去饱和;了解脂肪酸代谢的调节。4.熟悉卵磷脂和脑磷脂的生
推荐度:
点击下载文档文档为doc格式
6wqo50r8n11j03v4hzh8
领取福利

微信扫码领取福利

微信扫码分享