好文档 - 专业文书写作范文服务资料分享网站

初中数学竞赛专项训练--找规律题

天下 分享 时间: 加入收藏 我要投稿 点赞

. . . .

观察——归纳—猜想——找规律

给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题

的思路是实施特殊向一般的简化;具体方法和步骤是: (1)通过对几个特例的分析,寻找规律并且归纳; (2)猜想符合规律的一般性结论;

(3)验证或证明结论是否正确,下面通过举例来说明这些问题.

一、数字类

基本技巧

(一)标出序列号:

例如,观察下列各式数:0,3,8,15,24,……。 我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。

容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n-1 (二)公因式法:

每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n、3n有关。

2(2n?1)例如:1,9,25,49,(81),(121),的第n项为( ),

21,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以

此类推。

(三)增副

A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n的3次幂,即:n+1

B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2

(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。

例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……,

序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n个数为n?1。再看原数列是同时减2得到的新数列,则在n?1的基础上加2,得

2n?1 到原数列第n项

223n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并

恢复到原来。

例 : 4,16,36,64,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n项即n,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4 n,则求出第一百个数为4*100=40000 (一)等差数列

例题:2,5,8,( )。

例题5: 12,15,18,( ),24,27。 A.20 B.21 C.22 D.23 (二)等比数列

. . 资.料 . ..

222. . . .

例题1: 2,1,1/2,( )。 A.0 B.1/4 C.1/8 D.-1

例题2: 2,8,32,128,( )。 (三)平方数列

1、完全平方数列:

正序:1,4,9,16,25

逆序:100,81,64,49,36 2、一个数的平方是第二个数。 1)直接得出:2,4,16,( 256 )

解析:前一个数的平方等于第二个数,答案为256。 2)一个数的平方加减一个数等于第二个数:

1,2,5,26,(677) 前一个数的平方加1等于第二个数,答案为677。 3、隐含完全平方数列:

1)通过加减一个常数归成完全平方数列:0,3,8,15,24,( 35 )

前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案35 2)相隔加减,得到一个平方数列: 例:65,35,17,( 3 ),1 A.15 B.13 C.9 D.3

解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,再观察时发现:奇位置数时都是加1,偶位置数时都是减1,所以下一个数应该是2的平方减1等于3,答案是D。 * (四)立方数列

立方数列与平方数列类似。

例题1: 1,8,27,64,( 125 )

解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。 例题2:0,7,26,63 ,( 124 )

解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。 (五)、加法数列

数列中前两个数的和等于后面第三个数:n1+n2=n3 例题1: 1,1,2,3,5,( 8 )。 A8 B7 C9 D10

解析:第一项与第二项之和等于第三项,第二项与第三项之和等于第四项,第三项与第四项之和等于第五项,按此规律3 +5=8答案为A。 例题2: 4,5,( 9 ),14,23,37 A 6 B 7 C 8 D 9 解析:与例一相同答案为D

例题3: 22,35,56,90,( 145 ) 99年考题 A 162 B 156 C 148 D 145

解析:22 +35-1=56, 35+ 56-1=90 ,56+ 90-1=145,答案为D (六)、减法数列

前两个数的差等于后面第三个数:n1-n2=n3 例题1:6,3,3,( 0 ),3,-3 A 0 B 1 C 2 D 3

解析:6-3=3,3-3=0 ,3-0=3 ,0-3=-3答案是A。(提醒您别忘了:“空缺项在中间,从两边找规律”) (七)、乘法数列

1、前两个数的乘积等于第三个数

. . 资.料 . ..

. . . .

例题1:1,2,2,4,8,32,( 256 )

前两个数的乘积等于第三个数,答案是256。 例题2:2,12,36,80,( ) (2007年考题) A.100 B.125 C.150 D.175

22?3,12?2, 解析:2×1, 3×4 ,4×9,5×16 自然下一项应该为6×25=150 选C,此题还可以变形为:

232?4,42?5…..,以此类推,得出n?(n?1)

2、两数相乘的积呈现规律:等差,等比,平方等数列。 例题2:3/2, 2/3, 3/4,1/3,3/8 ( A ) (99年海关考题) A 1/6 B 2/9 C 4/3 D 4/9

解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8 3/8×?=1/16 答案是 A。 (八)、除法数列

与乘法数列相类似,一般也分为如下两种形式: 1、两数相除等于第三数。

2、两数相除的商呈现规律:顺序,等差,等比,平方等。 (九)、质数数列

由质数从小到大的排列:2,3,5,7,11,13,17,19… (十)、循环数列

几个数按一定的次序循环出现的数列。 例:3,4,5,3,4,5,3,4,5,3,4

以上数列只是一些常用的基本数列,考题中的数列是在以上数列基础之上构造而成的,下面我们主要分析以下近几年考题中经常出现的几种数列形式。 1、二级数列

这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。 例1:2 6 12 20 30 ( 42 ) A.38 B.42 C.48 D.56

解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。 例2:20 22 25 30 37 ( ) A.39 B.45 C.48 D.51

解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。

例3:2 5 11 20 32 ( 47 ) A.43 B.45 C.47 D.49

解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要 选的答案与32的差应该是15,所以答案应该是C。 例4:4 5 7 1l 19 ( 35 ) A.27 B.31 C.35 D.41

解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要 选的答案与19的差应该是16,所以答案应该是C。 例5:3 4 7 16 ( 43 ) A.23 B.27 C.39 D.43

解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,因而要选的答案与16的差应该是27,所以答案应该是D。

例6:32 27 23 20 18 ( 17 )

. . 资.料 . ..

初中数学竞赛专项训练--找规律题

....观察——归纳—猜想——找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向
推荐度:
点击下载文档文档为doc格式
6w4gx8emph6ehs64cxfu8wrp7230fg017tp
领取福利

微信扫码领取福利

微信扫码分享