好文档 - 专业文书写作范文服务资料分享网站

人教版初中数学八年级下册同步练习:平行四边形的性质与判定

天下 分享 时间: 加入收藏 我要投稿 点赞

平行四边形的性质与判定

学习要求

能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.

课堂学习检测

一、填空题:

1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.

2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.

3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.

4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.

5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.

6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.

7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD的面积为______.

8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,BG?42,则△CEF的周长为______.

9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)

综合、运用、诊断

一、解答题

10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠FAB.AB=a,AD=b.

(1)求证:△EFC是等腰三角形; (2)求EC+FC.

11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交

BC于F.求证:BE=FC.

12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,

求证:∠F=∠BCF.

13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求

证:BF∶BD=3∶3.

拓展、探究、思考

14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是

双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.

图1

(1)写出正比例函数和反比例函数的关系式;

(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;

(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.

图2

人教版初中数学八年级下册同步练习:平行四边形的性质与判定

平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这
推荐度:
点击下载文档文档为doc格式
6w45y3in7d036aw5tvxo0daes3y30z00x2s
领取福利

微信扫码领取福利

微信扫码分享