大学物理第三章 课后习题答案
3-1 半径为R、质量为M的均匀薄圆盘上,挖去一个直径为R的圆孔,孔的中心在求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:
1R处,2J1?1MR2 ① 2由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:
1MRMR3J2?Jc?md2???()2??()2?MR2 ②
2424232由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:
J?J1?J2?13MR2 323-2 如题图3-2所示,一根均匀细铁丝,质量为M,长度为L,在其中点O处弯成??120?角,放在xOy平面内,求铁丝对Ox轴、Oy轴、Oz轴的转动惯量。 分析:取微元,由转动惯量的定义求积分可得 解:(1)对x轴的转动惯量为:
L20Jx??rdm??(lsin600)22M1dl?ML2 L32(2)对y轴的转动惯量为:
L1ML2M5Jy???()??2(lsin300)2dl?ML2
0322L96(3)对Z轴的转动惯量为:
1ML1Jz?2???()2?ML2
322122题图3-2
3-3 电风扇开启电源后经过5s达到额定转速,此时角速度为每秒5转,关闭电源后经过16s风扇停止转动,已知风扇转动惯量为0.5kg?m,且摩擦力矩Mf和电磁力矩M均为常量,求电机的电磁力矩M。
分析:Mf,M为常量,开启电源5s内是匀加速转动,关闭电源16s内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M。 解:由定轴转动定律得:M?Mf?J?1,即
5?2?5?2??0.5??4.12N?m 5163-4 飞轮的质量为60kg,直径为0.5m,转速为1000r/min,现要求在5s内使其制动,求制动力F,假定闸瓦与飞轮之间的摩擦系数??0.4,飞轮的质量全部分布在轮的外周上,M?J?1?Mf?J?1?J?2?0.5?尺寸如题图3-4所示。
分析:分别考虑两个研究对象:闸瓦和杆。对象闸瓦对飞轮的摩擦力f对O点的力矩使飞轮逐渐停止转动,对飞由轮转动定律列方程,因摩擦系数是定值,则飞轮做匀角加速度运动,由转速求角加速度。对象杆受的合力矩为零。
解:设闸瓦对飞轮的压力为N,摩擦力为f,力矩为M, 飞轮半径为R,则依题意得,
M?fR?J? ① f??N?0.4N ② F?(0.5?0.75)?N?0.5 ③
J?mR2?60?0.252 ④
题图3-4 1000?2? ⑤
60?5解:①②③④⑤式得F?314N
3-5 一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如题图3-5所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上.当物体从静
??止释放后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用m、r、t和S表示). 分析:隔离物体,分别画出轮和物体的受力图,由转动定律和牛顿第二定律及运动学方程求解。
解:设绳子对物体(或绳子对轮轴)的拉力为T, 则根据牛顿运动定律和转动定律得:
r O mg?T?ma ① Tr?J? ②
由运动学关系有: a?r? ③ 由①、②、③式解得:J?m(g-a)r又根据已知条件 v0?0 ?2m a ④
题图3-5
??12SS?at2, a?2 ⑤
2t2 r T a gt2?1) 将⑤式代入④式得: J?mr(2S
T mg 题图3-5
3-6 一轴承光滑的定滑轮,质量为M?2.00kg,半径为R?0.100m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m?5.00kg,的物体,如题图3-6所示.已知定
1MR2,其初角速度 ?0?10.0rad/s,方向垂直纸面向里.求:(1) 2定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到??0时,物体上升的高度;
滑轮的转动惯量为J?(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向 分析:隔离体受力分析,对平动物体由牛顿第二定律列方程, 对定轴转动物体由转动定律列方程。 解:(1) ∵ mg?T?ma