第十八章 极值与条件极值
§1 极值与最小二乘法
1.求下列函数的极大值点和极小值点: (1)f(x,y)?(x?y?1);
(2)f(x,y)?3axy?x?y(a?0);
332x2y2(3)f(x,y)?xy1?2?2;
ab(4)f(x,y)?e(x?y?2y);
(5)f(x,y)?sinx?cosy?cos(x?y) (0?x,y?(6)f(x,y)?(x2?y2?1)2.
2x2?2);
?fx(x,y)?2(x?y?1)?0,解(1)由? 解得稳定点为 y?x?1.
f(x,y)??2(x?y?1)?0,?y而fxx?2,fxy??2,fyy?2.
由于D?0,故不能用极值的充分条件判断f是否在稳定点取极值,但由于当y?x?1时,f(x,y)?0,而y?x?1时f(x,y)?0,因而在y?x?1的点处,f(x,y)取极小值也是最小值0.
2??fx(x,y)?3ay?3x?0,(2)由? 解出稳定点为(0,0),(a,a). 2??fy(x,y)?3ax?3y?0,在点(0,0),a11?fxx(0,0)?0,a12?fxy(0,0)?3a,a22?fyy(0,0)?0,这时,
2D?a11a22?a12??9a2?0,
故(0,0)不是极值点.在点(a,a),
a11?fxx(a,a)??6a,a12?fxy(a,a)?3a,a22?fyy(a,a)??6a,
2D?a11a22?a12?27a2?0,a11??6a?0,
故f(x,y)在(a,a)取极大值f(a,a)?a.
3?x2y2?fx(x,y)?x(1?2?2)ab?(3)令?x2y2??fy(x,y)?y(1?a2?b2)?P1?(0,0),P2?(a3b3a3,b3x2y21?2?2?0,ab1?xy??0,22aba3,?b322 解得稳定点为
),P3?(),P4?(?a3,b3),
P5?(?,?).
在点P1?(0,0),fxx(0,0)?fyy(0,0)?0,fxy(0,0)?1且D?0,故f(x,y)在点
P1?(0,0)不取极值.
在点P2?(a3,b3),有
23?4b3aa11??4a3a?0,a12??a3b3b3,a22?且D?a11a22?a12?4?0,
2故f(x,y)在点P2?(,)取极大值
3ab. 9
在点P3?(a3,?),有
234b3aa11?4a3a?0,a12??a3b3b3,a22?且D?a11a22?a12?4?0,
2故f(x,y)在点P3?(,?)取极小值?3ab. 9在点P4?(?a3,),有
23?4b3aa11??4a3a?0,a12?a3b3b3,a22?且D?a11a22?a12?4?0,
2故f(x,y)在点P4?(?,)取极小值?3ab. 9在点P5?(?a3,?),有
a11??4a3a?0,a12??a3b323,a22??4b3a2?4?0, ?0且D?a11a22?a12故f(x,y)在点P5?(?,?)取极大值
3
ab. 9
2x2?1?fx(x,y)?e(1?2x?4y?2y)?0,(4)令? 解得稳定点(,?1).而 2x2f(x,y)?2e(1?y)?0,??y111a11?fxx(,?1)?2e?0,a22?fyy(,?1)?2e?0,a12?fxy(,?1)?0,
2221122且D?a11a22?a12?4e?0,所以,f(x,y)在(,?1)取极小值为 ?e.
22(5)令??fx(x,y)?cosx?sin(x?y)?0,?? 解得稳定点为(,).
36?fy(x,y)??siny?sin(x?y)?0,??????3a11?fxx(,)??3?0,a22?fyy(,)??3?0,a12?fxy(,)?,
3636362且D?a11a22?a12?29??3?0,故f(x,y)在(,)取极大值为3.
3642x2?y2?0,x2?y2?0, 解得稳定点为x?y?1上
22?f(x,y)?2x(x2?y2?1)?x(6)令?22f(x,y)?2y(x?y?1)?y?的所有点,而P1(0,0)是导数不存在的点.
由于f(x,y)在圆周x?y?1上的点取值0,而f(x,y)?0,故f(x,y)在圆周
22x2?y2?1上的点取极小值也是最小值0,而在P1(0,0),
f(x,y)?(x2?y2?1)2?1?f(0,0),?x2?y2?2,
因而P1(0,0)是极大值点,极大值为1.
2.已知y?ax?bx?c,观测得一组数据(xi,yi),i?1,2,?,n,利用最小二乘法,求系数a,b,c所满足的三元一次方程组.
2解 记f(a,b,c)?并令它们等于0,即
?(axi?1n2i?bxi?c?yi)2,为求其最小值,分别对a,b,c求偏导数,
n?f?2?(axi2?bxi?c?yi)xi2?0, ?ai?1n?f?2?(axi2?bxi?c?yi)xi?0, ?bi?1n?f?2?(axi2?bxi?c?yi)?0, ?ci?1即系数a,b,c所满足的三元一次方程组为
nnn?n4322ax?bx?cx?xyi,????iiii?i?1i?1i?1?i?1nnn?n32?a?xi?b?xi?c?xi??xiyi,
i?1i?1i?1?i?1nn?n2?a?xi?b?xi?cn??yi.i?1i?1?i?13.已知平面上n个点的坐标分别是
A1(x1,y1),A2(x2,y2),?,An(xn,yn),
试求一点,使它与这n个点距离的平方和最小.
解 设平面点为P(x,y),则它到n个点距离的平方和为
f(x,y)??[(x?xi)2?(y?yi)2],
i?1n由函数极值的条件得,
nn?f?f?2?(x?xi)?0,?2?(y?yi)?0, ?x?yi?1i?11n1n得稳定点(?xi,?yi)?(x,y).由于实际问题有最小值,而稳定点又唯一,故稳定
ni?1ni?1点即为最小值点.因而点(x,y)与这n个点距离的平方和最小.
4.求下列函数在指定范围D内的最大值和最小值: (1)f(x,y)?x?y,D?(x,y)x?y?4; (2)f(x,y)?x?xy?y,D?(x,y)x?y?1; (3)f(x,y,z)?(ax?by?cz)e?(x222?22?22???y2?z2)3,其中a?b?c?0,D?R.
222解(1)令??fx(x,y)?2x?0, 解得D内的唯一稳定点(0,0).又因为,
?fy(x,y)?2y?0,a11?fxx(0,0)?2?0,a22?fyy(0,0)??2?0,a12?fxy(0,0)?0,
且D?a11a22?a12??4?0,故在(0,0)点,f(x,y)达不到极值,在边界x?y?4上,
222f(x,y)?x2?y2?x2?(4?x2)?2(x2?2)??(x),x?2,
令??(x)?4x?0,得唯一的稳定点x?0,且???(x)?4?0,故?(x)在x?0取极小值,这就是函数f(x,y)的最小值,其值为f(0,?2)??4,在边界点x??2时y?0,
f(?2,0)?4,即函数在(?2,0)取最大值4.
?fx(x,y)?2x?y?0,(2)令 ? 解得唯一的稳定点(0,0),从而由
f(x,y)?2y?x?0,?ya11?fxx(0,0)?2?0,a22?fyy(0,0)?2?0,a12?fxy(0,0)??1,
且D?a11a22?a12?5?0故(0,0)是f(x,y)的极小值点,也是最小值点,最小值为
2f(0,0)?0.而在边界x?y?1上,在y?1?x,0?x?1,
3232x)?x, 241111在x?0或x?1取最大值f(1,0)?f(0,1)?1,在x?取最小值f(,)?.
2224f(x,y)?(1?在y?1?x,?1?x?0,
f(x,y)?x2?x?1,
在x?0或x??1取最大值f(?1,0)?f(0,1)?1,在x?在y??1?x,0?x?1,
1113取最小值f(?,)?. 2224f(x,y)?x2?x?1,
在x?0或x??1取最大值f(?1,0)?f(0,?1)?1,在x??1111取最小值f(?,?)?. 2224总之,在D上,f(x,y)取最小值f(0,0)?0,取最大值1. (3)令