......word..完美整理, 精品文档...
习题一
1. 用复数的代数形式a+ib表示下列复数
e?iπ/4; ①解: eπ?i43?5i13;(2?i)(4?3i);?. 7i?1i1?i2?2?22?π??π??cos????isin???????i??i ???442222??????②解:
3?5i?3?5i??1?7i?1613????i 7i?1?1+7i??1?7i?2525③解: ?2?i??4?3i??8?3?4i?6i?5?10i ④解:
3?1?i?3513?=?i???i i1?i222
2.求下列各复数的实部和虚部(z=x+iy)
z?a????(a?); z3;??1?i3?;??1?i3?;in. z?a?2??2?
①解: ∵设z=x+iy 则
33??x?a??iy??x?a??iy?z?a?x?iy??a?x?a??iy????? ???2z?a?x?iy??a?x?a??iy?x?a??y22222xy?z?a?x?a?y?z?a?∴Re?, . ?Im????22?z?a??x?a??y2?z?a??x?a??y2
②解: 设z=x+iy
∵z3??x?iy???x?iy??x?iy???x2?y2?2xyi??x?iy?
32222??x?x2?y2??2xy2???y?x?y??2xy?i?x3?3xy2??3x2y?y3?i
∴Rez3?x3?3xy2,
3??Im?z3??3x2y?y3.
??1?i3?③解: ∵?????2????1?i38?31?8???1?3???1??????23???3???1??3?????2 ?3?????3 ?1?8?0i??1 8......专业资料,可供参考.下载.分享...
......word..完美整理, 精品文档...
??1?i3?∴Re?????1, 2??3??1?i3?Im?????0. 2??3????1??3???1???3??2??3???1??3??2??33?i?④解: ∵??1?i3????2???8
?18?8?0i??1
∴Re???1?i3??Im??2???1, ???1?i3???2???0. ?k⑤解: ∵in??????1?,n?2kkn?2k?.
????1??i,k?1 ∴当n?2k时,Re?in????1?k,Im?in??0;
当n?2k?1时,Re?in??0,Im?in????1?k.
3.求下列复数的模和共轭复数
?2?i;?3;(2?i)(3?2i);
①解:?2?i?4?1?5.
?2?i??2?i
②解:?3?3 ?3??3
③解:?2?i??3?2i??2?i3?2i?5?13?65.
?2?i??3?2i???2?i???3?2i???2?i???3?2i??4?7i④解:
1?i2?1?i22?2
??1?i??2??1?i???2?1?i2 4、证明:当且仅当z?z时,z才是实数. 证明:若z?z,设z?x?iy,
则有 x?iy?x?iy,从而有?2y?i?0,即y=0
......专业资料,可供参考.下载.分享...
?
1?i2.
......word..完美整理, 精品文档...
∴z=x为实数.
若z=x,x∈?,则z?x?x. ∴z?z. 命题成立.
5、设z,w∈?,证明: z?w≤z?w
证明:∵z?w??z?w???z?w???z?w?z?w
2???z?z?z?w?w?z?w?w
?z?zw?z?w?w?z?w≤2222??2Re?z?w??2
z?w?2z?w222 ?z?w?2z?w ??z?w?2 ∴z?w≤z?w.
6、设z,w∈?,证明下列不等式.
z?w?z?2Rez?w?w z?w?z?2Rez?w?w
2222??2??2z?w?z?w?2z?w22?22?
2并给出最后一个等式的几何解释.
证明:z?w?z?2Rez?w?w在上面第五题的证明已经证明了. 下面证z?w?z?2Rez?w?w.
∵z?w??z?w???z?w???z?w?z?w
?z?z?w?w?z?w2222222????2??
2?z?2Rez?w?w.从而得证.
22??2∴z?w?z?w?2z?w?22?
几何意义:平行四边形两对角线平方的和等于各边的平方的和.
7.将下列复数表示为指数形式或三角形式
......专业资料,可供参考.下载.分享...