26.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P. (1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
2017年贵州省安顺市中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共30分) 1.﹣2017的绝对值是( ) A.2017
B.﹣2017 C.±2017 D.﹣
【考点】15:绝对值.
【分析】根据绝对值定义去掉这个绝对值的符号. 【解答】解:﹣2017的绝对值是2017. 故选A.
2.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A.275×104
B.2.75×104
C.2.75×1012 D.27.5×1011
【考点】1I:科学记数法—表示较大的数.
n为整数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将27500亿用科学记数法表示为:2.75×1012. 故选:C.
3.下了各式运算正确的是( ) A.2(a﹣1)=2a﹣1
B.a2b﹣ab2=0 C.2a3﹣3a3=a3 D.a2+a2=2a2
【考点】35:合并同类项;36:去括号与添括号. 【分析】直接利用合并同类项法则判断得出答案. 【解答】解:A、2(a﹣1)=2a﹣2,故此选项错误;
B、a2b﹣ab2,无法合并,故此选项错误; C、2a3﹣3a3=﹣a3,故此选项错误; D、a2+a2=2a2,正确. 故选:D.
4.如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )
A. B. C. D.
【考点】U2:简单组合体的三视图.
【分析】根据从上边看得到的图形是俯视图,可得答案. 【解答】解:从上边看矩形内部是个圆, 故选:C.
5.如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )
A.100° B.110° C.120° D.130° 【考点】JA:平行线的性质.
【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.
【解答】解:∵∠1+∠3=90°,
∴∠3=90°﹣40°=50°, ∵a∥b,
∴∠2+∠3=180°. ∴∠2=180°﹣50°=130°. 故选:D.
6.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A.16,10.5 B.8,9 C.16,8.5 D.8,8.5
【考点】W5:众数;VC:条形统计图;W4:中位数.
【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数,由图可知锻炼时间超过8小时的有14+7=21人.
【解答】解:众数是一组数据中出现次数最多的数,即8;
而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9; 故选B.
7.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为( )
A.6cm B.7cm C.8cm D.9cm
【考点】PB:翻折变换(折叠问题);LB:矩形的性质.
【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可. 【解答】解:根据折叠前后角相等可知∠BAC=∠EAC, ∵四边形ABCD是矩形, ∴AB∥CD, ∴∠BAC=∠ACD, ∴∠EAC=∠EAC, ∴AO=CO=5cm,
在直角三角形ADO中,DO=AB=CD=DO+CO=3+5=8cm. 故选:C.
8.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是( )
=3cm,
A.0 B.﹣1 C.2 D.﹣3
【考点】AA:根的判别式.
【分析】首先根据题意求得判别式△=m2﹣4>0,然后根据△>0?方程有两个不相等的实数根;求得答案. 【解答】解:∵a=1,b=m,c=1, ∴△=b2﹣4ac=m2﹣4×1×1=m2﹣4,
∵关于x的方程x2+mx+1=0有两个不相等的实数根, ∴m2﹣4>0,
则m的值可以是:﹣3,
2017年安顺市中考数学试卷及答案解析



