高等数学课后习题答案
The following text is amended on 12 November 2020.
习题十二
1.写出下列级数的一般项:
1111????357(1)
(2)
;
xxxxx2????22?42?4?62?4?6?8;
;
a3a5a7a9????3579(3)
1Un?2n?1; 解:(1)
Un?
(2)
xn2?2n?!!;
n?1 (3)
2.求下列级数的和:
?Un???1?a2n?12n?1;
(1)
??x?n?1??x?n??x?n?1?n?1?1;
(2)
??n?1n?2?2n?1?n?;
111?2?3?555(3)
;
un?1?x?n?1??x?n??x?n?1?解:(1)
111?????2??x?n?1??x?n??x?n??x?n?1???
11111????Sn??2?x?x?1??x?1??x?2??x?1??x?2??x?2??x?3?11?????x?n?1??x?n??x?n??x?n?1???111??????x??????2x?1x?nx?n?1??从而
11limSn?n??2x?x?1?,故级数的和为2x?x?1? 因此
(2)因为
Un??n?2?n?1???n?1?n?
Sn??3?2???2?1???4?3???3?2???5?4???4?3???n?2?n?1?1?21??1?2n?2?n?1??n?2?n?1???n?1?n?从而
所以n??limSn?1?2,即级数的和为1?2.
111Sn??2??n5551??1?n?1????5??5????11?51??1?n???1????4??5??(3)因为
从而
3.判定下列级数的敛散性:
limSn?n??114,即级数的和为4.
(1)
??n?1?n?1?n?;
111???1?66?1111?16(2)
?1??5n?4??5n?1?;
;
n22223n?12?3?3????1??n3333(3)
1111??3??n?555(4)5;
Sn??2?1???3?2??解:(1)从而n????n?1?n?
?n?1?1,故级数发散.
limSn???1?1111111?Sn??1?????????5?661111165n?45n?1?1?1???1??55n?1??(2)
11limSn?n??5,故原级数收敛,其和为5. 从而
2q??3的等比级数,且|q|<1,故级数收敛. (3)此级数为
Un??(4)∵
4.利用柯西审敛原理判别下列级数的敛散性:
1Un?1?0n5,而limn??,故级数发散.
cosnx?n(2)n?12;
???1?n?1?n(1)n?1?;
11??1?????3n?13n?23n?3??. n?1(3)
解:(1)当P为偶数时,
当P为奇数时,
因而,对于任何自然数P,都有
Un?1?Un?2??Un?p?11?n?1n,
?1?N????1???,则当n>N时,对任何自然数P恒有Un?1?Un?2?ε>0,取
?Un?p??成立,由柯西审敛
??1?n?1?n原理知,级数n?1?收敛.
(2)对于任意自然数P,都有
1??log2?????,当n>N时,对任意的自然数P都有Un?1?Un?2?于是,ε>0(0<ε<1),N=
由柯西审敛原理知,该级数收敛.
(3)取P=n,则
?Un?p??成立,
从而取
级数发散.
5.用比较审敛法判别下列级数的敛散性.
?0?112,则对任意的n∈N,都存在P=n所得Un?1?Un?2??Un?p??0,由柯西审敛原理知,原
111????????n?3n?5(1)4?65?71?21?31?n1?????2221?21?31?n(2)
πsin?n3n?1(3)
?;
?;
(4)
n?1??12?n31n;
1?n(5)n?11?a??a?0?;
(6)
??2n?1?1?.
Un?解:(1)∵
11?2?n?3??n?5?n
1?2而n?1n(2)∵
??收敛,由比较审敛法知
?Un?1?n收敛.
Un?11?n1?n1??1?n2n?n2n
而
?nn?1发散,由比较审敛法知,原级数发散.
ππsinnn33lim?limπ??πn??n??1π3n3n(3)∵
??ππsin??n3n也收敛. 而n?13收敛,故n?1sinUn?(4)∵
12?n3??1n31?1n32
?而
n?1?1n32?收敛,故
n?12?n3收敛.
??1111Un????nn1?anan,而n?1a收敛,故n?11?a(5)当a>1时,
11limUn?lim??0n??n??22当a=1时,,级数发散.
1limUn?lim?1?0n??n??1?an当0 也收敛.