好文档 - 专业文书写作范文服务资料分享网站

高等数学课后习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

高等数学课后习题答案

The following text is amended on 12 November 2020.

习题十二

1.写出下列级数的一般项:

1111????357(1)

(2)

xxxxx2????22?42?4?62?4?6?8;

a3a5a7a9????3579(3)

1Un?2n?1; 解:(1)

Un?

(2)

xn2?2n?!!;

n?1 (3)

2.求下列级数的和:

?Un???1?a2n?12n?1;

(1)

??x?n?1??x?n??x?n?1?n?1?1;

(2)

??n?1n?2?2n?1?n?;

111?2?3?555(3)

un?1?x?n?1??x?n??x?n?1?解:(1)

111?????2??x?n?1??x?n??x?n??x?n?1???

11111????Sn??2?x?x?1??x?1??x?2??x?1??x?2??x?2??x?3?11?????x?n?1??x?n??x?n??x?n?1???111??????x??????2x?1x?nx?n?1??从而

11limSn?n??2x?x?1?,故级数的和为2x?x?1? 因此

(2)因为

Un??n?2?n?1???n?1?n?

Sn??3?2???2?1???4?3???3?2???5?4???4?3???n?2?n?1?1?21??1?2n?2?n?1??n?2?n?1???n?1?n?从而

所以n??limSn?1?2,即级数的和为1?2.

111Sn??2??n5551??1?n?1????5??5????11?51??1?n???1????4??5??(3)因为

从而

3.判定下列级数的敛散性:

limSn?n??114,即级数的和为4.

(1)

??n?1?n?1?n?;

111???1?66?1111?16(2)

?1??5n?4??5n?1?;

n22223n?12?3?3????1??n3333(3)

1111??3??n?555(4)5;

Sn??2?1???3?2??解:(1)从而n????n?1?n?

?n?1?1,故级数发散.

limSn???1?1111111?Sn??1?????????5?661111165n?45n?1?1?1???1??55n?1??(2)

11limSn?n??5,故原级数收敛,其和为5. 从而

2q??3的等比级数,且|q|<1,故级数收敛. (3)此级数为

Un??(4)∵

4.利用柯西审敛原理判别下列级数的敛散性:

1Un?1?0n5,而limn??,故级数发散.

cosnx?n(2)n?12;

???1?n?1?n(1)n?1?;

11??1?????3n?13n?23n?3??. n?1(3)

解:(1)当P为偶数时,

当P为奇数时,

因而,对于任何自然数P,都有

Un?1?Un?2??Un?p?11?n?1n,

?1?N????1???,则当n>N时,对任何自然数P恒有Un?1?Un?2?ε>0,取

?Un?p??成立,由柯西审敛

??1?n?1?n原理知,级数n?1?收敛.

(2)对于任意自然数P,都有

1??log2?????,当n>N时,对任意的自然数P都有Un?1?Un?2?于是,ε>0(0<ε<1),N=

由柯西审敛原理知,该级数收敛.

(3)取P=n,则

?Un?p??成立,

从而取

级数发散.

5.用比较审敛法判别下列级数的敛散性.

?0?112,则对任意的n∈N,都存在P=n所得Un?1?Un?2??Un?p??0,由柯西审敛原理知,原

111????????n?3n?5(1)4?65?71?21?31?n1?????2221?21?31?n(2)

πsin?n3n?1(3)

?;

?;

(4)

n?1??12?n31n;

1?n(5)n?11?a??a?0?;

(6)

??2n?1?1?.

Un?解:(1)∵

11?2?n?3??n?5?n

1?2而n?1n(2)∵

??收敛,由比较审敛法知

?Un?1?n收敛.

Un?11?n1?n1??1?n2n?n2n

?nn?1发散,由比较审敛法知,原级数发散.

ππsinnn33lim?limπ??πn??n??1π3n3n(3)∵

??ππsin??n3n也收敛. 而n?13收敛,故n?1sinUn?(4)∵

12?n3??1n31?1n32

?而

n?1?1n32?收敛,故

n?12?n3收敛.

??1111Un????nn1?anan,而n?1a收敛,故n?11?a(5)当a>1时,

11limUn?lim??0n??n??22当a=1时,,级数发散.

1limUn?lim?1?0n??n??1?an当0

也收敛.

综上所述,当a>1时,原级数收敛,当0

2?1?ln2?1?1?1x??2x?11lim?ln2??2n?1x?0nnn?1n?1x(6)由知而发散,由比较审敛法知

lim1n??发散.

6.用比值判别法判别下列级数的敛散性:

n2?n3n?1(1)

?; (2)

?3n?1?n!n?1;

33233???231?22?23?2(3)

3n??n?2n;

2n?n!?nnn?1(1)

?n2Un?n3解:(1)

Un?1?n?1?23n1lim?limn?1?2??1n??Un??3n3n,,

由比值审敛法知,级数收敛.

Un?1?n?1?!3n?1lim?limn?1?n??Un??3?1n!n3n?1?lim?n?1??n?1n??3?1???

(2)

所以原级数发散.

高等数学课后习题答案

高等数学课后习题答案Thefollowingtextisamendedon12November2020.习题十二1.写出下列级数的一般项:1111????357(1)(2);xxxxx2?
推荐度:
点击下载文档文档为doc格式
6v1733lpg80ne2d1fovz9epjx24qp9012vv
领取福利

微信扫码领取福利

微信扫码分享