好东西大家一起分享
9.自由落体运动
(1)条件:初速度为零,只受重力作用. (2)性质:是一种初速为零的匀加速直线运动,a=g. (3)公式:10.运动图像
(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度; ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动; ③图像与横轴交叉,表示物体从参考点的一边运动到另一边.
(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;
②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值. ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率. ④图线与横轴交叉,表示物体运动的速度反向.
⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.
三、牛顿运动定律
★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止. (1)运动是物体的一种属性,物体的运动不需要力来维持. (2)定律说明了任何物体都有惯性.
(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从
好东西大家一起分享
大量现象中寻找事物的规律.
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系. 2.惯性:物体保持匀速直线运动状态或静止状态的性质.
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度.
★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F 合 =ma (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.
(2)对牛顿第二定律的数学表达式F 合 =ma,F 合 是力,ma是力的作用效果,特别要注意不能把ma看作是力. (3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.
(4)牛顿第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma与F 合 的方向总是一致的.F 合 可以进行合成与分解,ma也可以进行合成与分解.
4. ★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.
(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.
(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加. 5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中. 6.超重和失重
(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题
①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.
③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.
6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。
四、曲线运动 万有引力
1.曲线运动
(1)物体作曲线运动的条件:运动质点所受的合外加速度)的方向跟它的速度方向不在同一直线 线运动的特点:质点在某一点的速度方向,就是通过
力(或(2)曲该点的
好东西大家一起分享
曲线的切线方向.质点的速度方向时刻在改变,所以曲线运动一定是变速运动.
(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等. 2.运动的合成与分解
(1)合运动与分运动的关系:①等时性;②独立性;③等效性. (2)运动的合成与分解的法则:平行四边形定则.
(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动. 3. ★★★平抛运动
(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动. (2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动.
①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向); ②由两个分运动规律来处理(如右图).
4.圆周运动
(1)描述圆周运动的物理量
①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向
②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度.其方向在中学阶段不研究.
频率f ---------做圆周运动的物体运动一周所用的时间叫做周期. 做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率.
③周期T,
⑥向心力:总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小.大小
[注意]向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,
千万不可在物体受力之外再添加一个向心力.
(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动.
(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小).一般而言,合加速度方向不指向圆心,合力不一定等于向心力.
好东西大家一起分享
合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度. ①如右上图情景中,小球恰能过最高点的条件是v≥v临 v临由重力提供向心力得v临gr②如右下图情景中,小球恰能过最高点的条件是v≥0。 5★.万有引力定律
(1)万有引力定律:宇宙间的一切物体都是互相吸引的.两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 公式:
(2)★★★应用万有引力定律分析天体的运动
①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.即 F引=F向得:
应用时可根据实际情况选用适当的公式进行分析或计算.②天体质量M、密度ρ的估算:
(3)三种宇宙速度
①第一宇宙速度:v 1 =7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度. ②第二宇宙速度(脱离速度):v 2 =11.2km/s,使物体挣脱地球引力束缚的最小发射速度. ③第三宇宙速度(逃逸速度):v 3 =16.7km/s,使物体挣脱太阳引力束缚的最小发射速度. (4)地球同步卫星
所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等
于地球的自转周期,即T=24h=86400s,离地面高度 同步卫星的轨道一定在赤道平
面内,并且只有一条.所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着. (5)卫星的超重和失重
“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同.“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.
好东西大家一起分享
五、动量
1.动量和冲量
(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定. 2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p 或 Ft=mv′-mv (1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向. (2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.
(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.
★★★ 3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变. 表达式:m 1 v 1 +m 2 v 2 =m 1 v 1 ′+m 2 v 2 ′ (1)动量守恒定律成立的条件
①系统不受外力或系统所受外力的合力为零.
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.
③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变. (2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性. 4.爆炸与碰撞
(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.
(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.
(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.
5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.
六、机械能