精心整理
解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几
只?
解:
4*100=400,400-0=400假设都是兔子,一共有400只兔子的脚,
那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372实际鸡的脚数比兔子的脚数只少28只,相差372只,
这是为什么?
4+2=6这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减
少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6) 372÷6=62表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只 100-62=38表示兔的只数 三.数字数位问题 解: 首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。 解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那
么十位上的数字之和就是10+20+30+……+90=450它有能被9整除 同样的道理,100~900百位上的数字之和为4500同样被9整除 也就是说1~999这些连续的自然数的各个位上的数字之和可以被9
整除;
从1000~1999千位上一共999个“1”的和是999,也能整除; 最后答案为余数为0。 2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的
最小值...
解:
(A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B)
前面的1不会变了,只需求后面的最小值,此时(A-B)/(A+B)最大。 对于B/(A+B)取最小时,(A+B)/B取最大, 问题转化为求(A+B)/B的最大值。
(A+B)/B=1+A/B,最大的可能性是A/B=99/1 (A+B)/B=100
(A-B)/(A+B)的最大值是:98/100
页脚内容
精心整理
答案为6.375或6.4375
因为A/2+B/4+C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C
为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375 当是103时,103/16=6.4375 4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.
如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.
答案为476 解:设原数个位为a,则十位为a+1,百位为16-2a 根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=716-2a=4 答:原数为476。 5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7
倍多24,求原来的两位数. 答案为24 解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。 6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与
原数相加,和恰好是某自然数的平方,这个和是多少? 答案为121 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b) 因为这个和是一个平方数,可以确定a+b=11 因此这个和就是11×11=121 答:它们的和为121。 7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数. 答案为85714
解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横
线,请将整个看成一个六位数)
再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是
200000+x
根据题意得,(200000+x)×3=10x+2 解得x=85714
所以原数就是857142 答:原数为857142
页脚内容
精心整理
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位
数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于
观察
abcd 2376 cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b
=4时成立。 先取d=3,b=9代入竖式的百位,可以确定十位上有进位。 根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。 再观察竖式中的十位,便可知只有当c=6,a=3时成立。 再代入竖式的千位,成立。 得到:abcd=3963 再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。 9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果
用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数. 解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以 10.如果现在是上午的10点21分,那么在经过28799...99(一共有
20个9)分钟之后的时间将是几点几分? 答案是10:20 解: (28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题 1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有
()
A768种B32种C24种D2的10次方中 解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=
120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只
页脚内容
精心整理
有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均
有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2若把英语单词hello的字母写错了,则可能出现的错误共有() A119种B36种C59种D48种 解:
5全排列5*4*3*2*1=120 有两个l所以120/2=60
原来有一种正确的所以60-1=59 五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含
钙和铁的食品种类的最大值和最小值分别是() A43,25B32,25C32,15D43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是() A,5B,6C,7D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7
类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26
由于a2、a3均表示人数,可以求出它们的整数解:
当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=
8+6+2+7+2=25,检验所有条件均符。
页脚内容
精心整理
故只解出第二题的学生人数a2=6人。
3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参
加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数) 87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人) 100-29=71(及格的最少人数,其实都是全对的) 及格率至少为71% 六.抽屉原理、奇偶性问题 1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、
黄四种,问最少要摸出几只手套才能保证有3副同色的? 解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。 把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1
副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只) 答:最少要摸出9只手套,才能保证有3副同色的。 2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 答案为21 解: 每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法. 当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样.
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是
黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与白球的个数。 当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个)
页脚内容