名师精准押题
111f?x?min?f?t??et?t2?at?et?t2?t?t?et??et?1?t??t2,
222令h?x??ex?1?x??12x,x?1,则h??x??x(1?ex)?0恒成立, 211所以函数h?x?在?1,???上单调递减,所以h?x??e?1?1???12?,
22111所以et?1?t??t2?,即当x??1,???时f?x?min?,
222故函数f?x?在?1,???上的最小值小于
1. 2?x?2?rcos?222.(1)将曲线C1的参数方程?化为普通方程为?x?2??y2?r2,
?y?rsin?即x2?y2?4x?4?r2?0,由?2?x2?y2,?cos??x,可得曲线C1的极坐标方程为
?2?4?cos??4?r2?0,
????因为曲线C1经过点P?2,?,所以22?4?2?cos?4?r2?0,
3?3?解得r?2(负值舍去),所以曲线C1的极坐标方程为??4cos?.
???(2)因为A??1,??,B??2,???在曲线C2:?2?2?cos2???6上,
2???????所以?12?2?cos2???6,?2?cos2???????22?2?cos2???6,
2????所以
1OA2?1OB2?1?12?12?2?2?cos2?2?cos2?2??. 66323.(1)当b?1时,因为
1aaaf?x??g?x??x??x?1?x??x?1??1, 2222a1f?x??g?x?的最小值为3,所以?1?3,解得a??8或4.
22(2)当b??1时,f?x??g?x??1即2x?a?x?1?1,
a?1?当x??,1?时,2x?a?x?1?1?2x?a?1?x?1?2x?a?x,即?x?a,
3?2?a1?1?因为不等式f?x??g?x??1的解集包含?,1?,所以a?1且?,
32?2?即1?a?3?3?,故实数a的取值范围是?1,?. 2?2?欢迎访问“高中试卷网”——http://sj.fjjy.org
·11·
名师精准押题
·12·