第二十五讲 环形跑道行程问题
知识要点
在封闭的环形道上(圆形)同向运动属于追及问题,反向运动属于相遇问题。同时同地同向出发,其追及路程就是环形道一周的长。
典型例题
例1 .如图,在一圆形跑道上。小明从A点出发,小强从B点同时出发,相向行走。6分钟后,小明与小强相遇,再过4分钟,小明到达B点,又再过8分钟,小明与小强再次相遇。问小明环形一周要多少时间?
例2
甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。问几分钟后,甲第1次追上乙?
(400-100)÷(100-80)=15(分)
◆ 孩子的未来 我们的一切 ◆
例3 如图,两名运动员在沿湖的环形跑道上练习长跑。甲每分钟跑250米,乙每分钟跑200米。两人同时同地同向出发,45分钟后甲追上了乙。如果两人同时同地反向而跑,经过多少分钟后两人相遇?
例4
甲乙从360米的环形跑道上的同一地点同向跑步。甲每分钟跑305米,乙每分钟跑275米。两人起跑后,第一次相遇在离起点多少米处?
◆ 孩子的未来 我们的一切 ◆
例5 已知等边三角形ABC的周长为360米,甲从A点出发,按逆时针方向前进,每分钟走55米,乙从BC边上D点(距C点30米)出发,按顺时针方向前进,每分钟走50米。两人同时出发,几分钟相遇?当乙到达A点时,甲在哪条边上,离C点多远?(上海奉贤小升初口奥试题)
◆ 孩子的未来 我们的一切 ◆
例6 一个边长为100米的正方形跑道,甲乙二人分别在跑道相对的两个顶点逆时针同时起跑,甲的速度是每秒7米,乙的速度是每秒5米,他们在转弯处都要耽误5秒,当甲第一次追上乙时,乙跑了几米
◆ 孩子的未来 我们的一切 ◆
例6.三个环形跑道相切排列,每个环形跑道的周长均为210厘米。甲、乙两只爬虫分别从A、B两地按箭头所示的方向出发,甲爬虫绕1、2号环形跑道作“8”字形循环运动,乙爬虫绕3、2号环形跑道作“8”字形循环运动,甲、乙两只爬虫的速度分别是每分钟20、15厘米。问甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
A
1 ● C 2 ● D 3 ● B
? 甲乙爬虫第一次相遇时,它们位于2号环形道的上方。它们共爬行了3个“半环形”。
◆ 孩子的未来 我们的一切 ◆