.
CBTC系统资料
一.移动闭塞系统工作原理和特点
上面我们介绍的是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。如图33所示。
图33. 不同闭塞制式的列车运行间隔示意图
图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。
移动闭塞(Moving block)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。
--
.
移动闭塞系统相比现有的ATC系统主要有以下特点: 1、可以缩小列车之间的行车间隔;
2、车-地之间的信息交换,不再依赖于轨道电路; 3、车辆控制中心掌握在线运行各次列车的精确位置和速度; 4、列车与控制中心之间保持不间断地双向通信;
5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路; 6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。 基于通信的列车运行控制系统(Communication - Based Train Control—简称CBTC系统), 便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础, CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。下面我们先对基于感应环线通信的移动闭塞CBTC系统进行一些分析,然后对基于无线(Radio)通信虚拟闭塞的CBTC系统作些介绍。
二.基于感应环线通信的移动闭塞制式CBTC系统
移动闭塞系统在城市轨道交通中运用的前提,是实现列车与地面的双向实时通信,而双向通信的地面有线设备,目前主要有两种方式,一种是在全线敷设用于发送微波的波导管,这种制式的移动闭塞,已于2003年初,在国外的城市轨道交通中得到运用;另一种是利用敷设于全线的感应环线进行双向通信,这种制式的移动闭塞,在国外早已经得到运用,目前
--
.
我国至少有两个城市的轨道交通,决定采用这种制式。由于篇幅所限,尽可能结合国内的实际情况,这里主要介绍基于“感应环线”通信的移动闭塞CBTC系统。
移动闭塞原理示意图,如图34所示。
图34、移动闭塞原理示意图
(一)移动闭塞系统的基本构成
移动闭塞系统由系统管理中心(SMC);车辆控制中心(VCC);车载设备(VOBC);车站控制器(STC);感应环线通信系统设备; 车场系统设备;车站发车指示器、站台紧急停车按钮、接口等设备组成。如图所示,系统管理中心与车辆控制中心进行双向通信,完成对所有列车的自动监控;车辆控制中心与全线的列车进行不间断地双向通信,所有的列车将其所在的精确位置和运行速度,报告给车辆控制中心;车辆控制中心在完全掌握所有列车的精确位置、速度等信息的前提下,告知各列列车运行的目标停车点;列车接收车辆控制中心发来的目标停车点信息,车载计算机根据允许运行的距离、所在区段的线路条件及列车的性能等,不断地计算运行速度,自动地完成速度控制。车辆控制中心还与车站联锁装置通信,完成列车进路的排列。
1、系统管理中心(SMC)的构成
--
.
系统管理中心,对系统进行全面的协调管理,完成所有的列车自动监控功能。其设备设于运营控制中心(OCC),系统的软件/硬件都按模块化的原则设计。其主要硬件部分包括:
(1)系统管理中心工作站。除系统服务器外,还配置调度员工作站、调度长工作站、模拟显示工作站、系统维护工作站、运行图编辑工作站及车场监视工作站。
(2)运行图调整服务器(SRS)。冗余的运行图调整服务器,通过系统管理中心I/O与车辆控制中心相连,以实现运行图调整服务器与车辆控制中心的通信,运行图调整服务器还与SCADA、时钟、无线等系统接口。
(3)数据日志服务器,冗余配置,它可以保留二个月以上的运行数据。
(4)网络通信设施。包括:系统管理中心的双局域网、冗余交换机、与光纤传输通道的冗余接入设施、与培训中心及综合维修基地连接的通信设施等。
(5)车站控制器紧急通路(SCEG),当车辆控制中心出现故障,不能对系统进行控制时,管理中心通过车站控制紧急通路,直接与车站控制器(STC)进行通信连接,实现对在线列车和轨旁设备的监控。车站控制器紧急通路有紧急通路切换开关设备、协议转换单元(PCU)组成,每台协议转换单元可与两台车站控制器进行通信连接。
(6)系统管理中心I/O机架。
(7)投影模拟显示系统。包括:模拟显示控制工作站,及背投模拟显示屏。 还有车场系统管理中心工作站,综合维修基地监测工作站、仿真及培训远程终端设备等。 2、车辆控制中心(VCC)的构成
车辆控制中心,位于运营控制中心,它有以下主要部分构成:
(1)车辆控制中心的中央计算机。中央计算机采取三取二的配置,它包括三台工业级计算机,以及相关的输入/输出接口;三个中央处理单元通过显示/键盘选择开关,来共享一个显示和键盘;还有通用接口盒、电缆分线盒等。
--
.
(2)车辆控制中心的I/O机架。主要设备有:多路复用输入设备;中央同步设备;电源、定时器、保险丝等。
(3)车辆控制中心的数据传输架。 (4)车辆控制中心的调度员终端。
(5)中央紧急停车按钮(CESB)。它与车辆控制中心接口,当调度员按下该按钮,将封锁所有的轨道,而且所有的列车立即停车;当紧急停车按钮中插入钥匙后,才可以解除。
车辆控制中心还设有数据记录计算机、打印机等其他设备。 3、轨旁设备
轨旁设备,主要有车站控制器(STC);感应环线通信系统;系统管理中心的车站工作站等设备。
(1)车站控制器,设于设备集中站,每个车站控制器都有一个道岔安全控制器,其中带冗余的双CPU固态联锁控制器,是车站控制器的核心单元。车站控制器通过双共线调制解调链路与车辆控制中心通信,它有调制、解调器机架、接口盘、电源机架、预处理器及其机架等组成。
(2)感应环线通信系统,位于设备室和轨旁,它有以下设备组成:馈电设备(FID);入口馈电设备(EFID);远端环线盒;感应环线电缆;支架等。感应环线电缆由扭绞铜制线芯和绝缘防护层组成,环线敷设于轨道之间,每25米交叉一次。
(3)系统管理中心的车站工作站,由工业级计算机和接入设备组成,其接入光纤通信环网,实现与系统管理中心的远程通信。它与车站控制器接口,实现车站的本地控制;还与旅客信息向导系统等设备接口。
轨旁设备还包括:站台紧急停车按钮;站台发车指示器;车站现地控制盘;及信号机、转撤机等现场设备。
--