第 1 页 共 7 页
课时跟踪检测(二十) 动量定理 动量守恒定律
对点训练:动量定理的理解与应用
1.(2017·合肥一模)质量为0.2 kg的小球竖直向下以6 m/s的速度落至水平地面上,再以4 m/s的速度反向弹回。取竖直向上为正方向,在小球与地面接触的时间内,关于球动量变化量Δp和合外力对小球做的功W,下列说法正确的是( )
A.Δp=2 kg·m/s W=-2 J B.Δp=-2 kg·m/s W=2 J C.Δp=0.4 kg·m/s W=-2 J D.Δp=-0.4 kg·m/s W=2 J
解析:选A 取竖直向上为正方向,则小球与地面碰撞过程中动量的变化量:Δp=mv2
-mv1=0.2×4 kg·m/s-0.2×(-6)kg·m/s=2 kg·m/s,方向竖直向上。
1111
由动能定理,合外力做的功:W=mv22-mv12=×0.2×42J-×0.2×62J=-2 J。
2222故A正确。
2.(多选)(2017·常德模拟)如图所示,质量为m的小球从距离地面高H的A点由静止开始释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零。不计空气阻力,重力加速度为g。关于小球下落的整个过程,下列说法正确的有( )
A.小球的机械能减少了mg(H+h) B.小球克服阻力做的功为mgh C.小球所受阻力的冲量大于m2gH D.小球动量的改变量等于所受阻力的冲量
解析:选AC 小球在整个过程中,动能变化量为零,重力势能减小了mg(H+h),则小球的机械能减小了mg(H+h),故A正确;对小球下落的全过程运用动能定理得,mg(H+h)-Wf=0,则小球克服阻力做功Wf=mg(H+h),故B错误;小球落到地面的速度v=2gH,对进入泥潭的过程运用动量定理得:IG-IF=0-m2gH,得:IF=IG+m2gH知阻力的冲量大于m2gH,故C正确;对全过程分析,运用动量定理知,动量的变化量等于重力的冲量和阻力冲量的矢量和,故D错误。
3.(2016·北京高考)(1)动量定理可以表示为Δp=FΔt,其中动量p和力F都是矢量。在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究。例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大
第 2 页 共 7 页
小都是v,如图甲所示。碰撞过程中忽略小球所受重力。
a.分别求出碰撞前后x、y方向小球的动量变化Δpx、Δpy; b.分析说明小球对木板的作用力的方向。
(2)激光束可以看作是粒子流,其中的粒子以相同的动量沿光传播方向运动。激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用。光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒。一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图乙所示。图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行。
请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向。
a.光束①和②强度相同; b.光束①比②的强度大。
解析:(1)a.x方向:动量变化为Δpx=mvsin θ-mvsin θ=0 y方向:动量变化为Δpy=mvcos θ-(-mvcos θ)=2mvcos θ 方向沿y轴正方向。
b.根据动量定理可知,木板对小球作用力的方向沿y轴正方向;根据牛顿第三定律可知,小球对木板作用力的方向沿y轴负方向。
(2)a.仅考虑光的折射,设Δt时间内每束光穿过小球的粒子数为n,每个粒子动量的大小为p。
这些粒子进入小球前的总动量为p1=2npcos θ 从小球出射时的总动量为p2=2np p1、p2的方向均沿SO向右
根据动量定理得FΔt=p2-p1=2np(1-cos θ)>0
可知,小球对这些粒子的作用力F的方向沿SO向右,根据牛顿第三定律,两光束对小球的合力的方向沿SO向左。
b.建立如图所示的Oxy直角坐标系。
x方向:根据(2)a同理可知,两光束对小球的作用力沿x轴负方向。
y方向:设Δt时间内,光束①穿过小球的粒子数为n1,光束②穿过小球的粒子数为n2,
第 3 页 共 7 页
n1>n2。
这些粒子进入小球前的总动量为p1y=(n1-n2)psin θ 从小球出射时的总动量为p2y=0
根据动量定理:FyΔt=p2y-p1y=-(n1-n2)psin θ
可知,小球对这些粒子的作用力Fy的方向沿y轴负方向,根据牛顿第三定律,两光束对小球的作用力沿y轴正方向。
所以两光束对小球的合力的方向指向左上方。 答案:见解析
对点训练:动量守恒定律的理解及应用
4.(多选)(2017·湖北名校期中测试)关于动量守恒的条件,下列说法正确的是( ) A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统所受合外力所做的功为零,系统动量一定守恒 C.只要系统所受合外力的冲量为零,系统动量一定守恒 D.系统加速度为零,系统动量一定守恒
解析:选CD 只要系统所受合外力的矢量和为零,系统动量就守恒,与系统内是否存在摩擦力无关,故A错误;系统所受合外力做的功为零,则系统所受合外力不一定为零,系统动量不一定守恒,故B错误;力与力的作用时间的乘积是力的冲量,系统所受到合外力的冲量为零,则系统受到的合外力为零,系统动量守恒,故C正确;系统加速度为零,由牛顿第二定律可得,系统所受合外力为零,系统动量守恒,故D正确。
5.(2017·济宁高三期末)如图所示,一质量M=3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=1.0 kg的小木块A。
给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离木板B。 在小木块A做加速运动的时间内,木板速度大小可能是( )
A.1.8 m/s C.2.8 m/s
B.2.4 m/s D.3.0 m/s
解析:选B A先向左减速到零,再向右做加速运动,在此期间,木板做减速运动,最终它们保持相对静止,设A减速到零时,木板的速度为v1,最终它们的共同速度为v2,取8
水平向右为正方向,则Mv-mv=Mv1,Mv1=(M+m)v2,可得v1= m/s,v2=2 m/s,所
38
以在小木块A做加速运动的时间内,木板速度大小应大于2.0 m/s而小于 m/s,只有选项
3B正确。
6.(2017·济南模拟)如图所示,质量均为m的小车与木箱紧挨着静止在光滑的水平冰面上,质量为2m的小明同学站在小车上用力向右迅速推出木箱后,木箱相对于冰面运动的速度大小为v,木箱与右侧