好文档 - 专业文书写作范文服务资料分享网站

高一数学必修一知识点总结 

天下 分享 时间: 加入收藏 我要投稿 点赞

就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间. 如果对于区间D上的任意两个自变量的值x1,x2,当x1

注意:函数的单调性是函数的局部性质; (2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数

y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的

图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法:

1 任取x1,x2∈D,且x1

2 作差f(x1)-f(x2); ○

3 变形(通常是因式分解和配方); ○

4 定号(即判断差f(x1)-f(x2)的正负); ○

5 下结论(指出函数f(x)在给定的区间D上的单调性). ○

(B)图象法(从图象上看升降) (C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

第 6 页 共 13 页

利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对称; ○

2确定f(-x)与f(x)的关系; ○

3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)○

是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或

f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法

4) 消参法 10.函数最大(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○

2 利用图象求函数的最大(小)值 ○

3 利用函数单调性的判断函数的最大(小)值: ○

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 例题:

1.求下列函数的定义域: ⑴y?x2?2x?15 ⑵y?1?(x?1)2

x?1x?3?3第 7 页 共 13 页

2.设函数f(x)的定义域为[0,1],则函数f(x2)的定义域为_ _

3.若函数f(x?1)的定义域为[?2,3],则函数f(2x?1)的定义域是

?x?2(x??1)?4.函数 ,若f(x)?3,则x= f(x)??x2(?1?x?2)?2x(x?2)?5.求下列函数的值域:

⑴y?x2?2x?3 (x?R) ⑵y?x2?2x?3 x?[1,2] (3)

y?x?1?2x (4)y??x2?4x?5 6.已知函数f(x?1)?x2?4x,求函数f(x),7.已知函数

f(2x?1)的解析式

f(x)满足2f(x)?f(?x)?3x?4,则f(x)= 。

8.设f(x)是R上的奇函数,且当x?[0,??)时,f(x)?x(1?3x),则当x?(??,0)时

f(x)=

f(x)在R上的解析式为

9.求下列函数的单调区间:

⑴ y?x2?2x?3 ⑵y??x2?2x?3 ⑶ y?x2?6x?1

10.判断函数y??x3?1的单调性并证明你的结论.

21?x11.设函数f(x)?判断它的奇偶性并且求证:f(1)??f(x).

21?xx

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果x?a,那么x叫做a的n次方根,其中n>1,且n∈N*.

? 负数没有偶次方根;0的任何次方根都是0,记作n0?0。 当n是奇数时,nan?a,当n是偶数时,nan?|a|??第 8 页 共 13 页

n?a(a?0)

??a(a?0)2.分数指数幂

正数的分数指数幂的意义,规定:

mna?nam(a?0,m,n?N*,n?1)mn,

a??1amn?1nam(a?0,m,n?N*,n?1)

? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)a·a?arrr?s

x(a?0,r,s?R); (a?0,r,s?R); (a?0,r,s?R).

rsrs(a)?a(2) rrs(ab)?aa (3)

(二)指数函数及其性质

1、指数函数的概念:一般地,函数y?a(a?0,且a?1)叫做指数函数,其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 650

在R上单调递减 非奇非偶函数 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,f(x)?a(a?0且a?1)值域是[f(a),f(b)]或

第 9 页 共 13 页

x[f(b),f(a)];

(2)若x?0,则f(x)?1;f(x)取遍所有正数当且仅当x?R; (3)对于指数函数f(x)?a(a?0且a?1),总有f(1)?a; 二、对数函数 (一)对数

1.对数的概念:一般地,如果a?N(a?0,a?1),那么数x叫做以.a为底..N的对数,记作:x?logaN(a— 底数,N— 真数,logaN— 对数式)

说明:○1 注意底数的限制a?0,且a?1;

x2 a○

xx?N?logaN?x;

3 注意对数的书写格式. ○

两个重要对数:

logaN 1 常用对数:以10为底的对数lgN; ○

2 自然对数:以无理数e?2.71828?为底的对数的对数lnN. ○

? 指数式与对数式的互化

幂值 真数

ab= N?logaN= b

底数 指数 对数

(二)对数的运算性质

如果a?0,且a?1,M?0,N?0,那么: 1 loga(M·N)?logaM+logaN; ○

M?logaM-logaN; N3 logaMn?nlogaM (n?R). ○

2 loga○

注意:换底公式

logab?logcb (a?0,且a?1;c?0,且c?1;b?0).

logca第 10 页 共 13 页

6sdob940oa3cwgi88zx7
领取福利

微信扫码领取福利

微信扫码分享