目录
1
摘要
化归方法是数学解决问题的一般方法,是被广泛使用着的一种用来研究数学
问题,解决数学问题的重要方法,是中学数学的基本思想方法之一。化归方法包括三个要素:化归对象,化归目标和化归途径;化归要遵循简单化原则,熟悉化原则,具体化原则,和谐化低层次化原则,标准形式化原则等;
2
1.化归方法的界定、意义及遵循原则
数学思想方法是中学数学教学的重要内容之一。任何数学问题的解决无不以数学思想为指导,以数学方法为手段。数学思想是教材体系的灵魂,是数学设计的指导,是数学教学的统帅,是解题思路的指南。化归在数学中是一个非常基本的思想方法,有着十分广泛的应用。不仅许多重要的思想方法都属于“化归”的范畴,而且许多重要的数学思想和研究策略也可用化归的思想来概括。 1.1化归方法的界定
回顾我们处理数学问题的过程与经验,会发现我们常常是将待解决的陌生问题通过转化,归结为一个比较熟悉的问题来解决因为这样就可以充分调动和运用我们已有的知识、经验和方法;也常将一个复杂的问题转化结为一个或几个简单的问题来解决等等。他们的科学概括就是数学上解决问题的一般思想方法——化归。
化归即转化归结的意思,把有待解决、未解决的问题,通过转化迁移,归结为一类已经解决或较易解决的问题中去,以求得解决,这就是“化归”。化归方法是数学解决问题的一般方法,其基本思想是:人们在解决数学问题时,常常是将待解决的问题A,通过某种手段,归结为另一个问题B,而问题B是相对较易解决或以有固定解决程式的问题,且通过对问题B的解决可得到原问题A的解答。其中问题B常被称作化归或方向,转化的手段被称为化归途经或化归策略。可见,化归包含三个基本要素:
(1)化归对象,即把什么东西进行化归; (2)化归目标,即化归到何处去; (3)化归途经,即如何进行化归。
化归方法有着坚实的客观基础,是人们对事物间的“普遍联系”和矛盾在一定条件下的“相互转化”的能动反映。它着眼于揭示联系,实现转化,通过“矛盾转化”解决问题。 1.2化归方法的意义
化归不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。所谓的化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题。总之,化归在数学解题中几乎无处不在,化归的基本功能是:生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗。说到底,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,使问题得以解决。实现这种转化的方法有:待定系数法,配方法,整体代入法以及化动为静,由抽象到具体等转化思想。这也是辩证唯物主义的基本观点。
匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却
3
会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。“把水倒掉”,这就是化归,这就是数学家常用的方法。翻开数学发展的史册,这样的例子不胜枚举,著名的哥尼斯堡七桥问题便是一个精彩的例证。大数学家欧拉解决这一问题的思维程序是:
这是化归问题一个很好的应用,由此我们容易归纳出化归思想方法的思维模式:
可见解题能力的强弱在于:1、有敏锐的洞察能力,才能找准目标模型,2、有较强的化归能力,才能有效地把问题转化为目标模型,至于运用模型的内部规律求解就比较容易了。在数学发展的今天,化归方法被广泛普遍的运用着,并被不断具体化为一些更特殊更便于操作使用的方法,如特殊化方法、一般化方法等。在现代中学数学中,化归思想方法体现在各学校,应用十分广泛。如几何中空间向平面,曲线向直线的转化,代数中高次向低次,超越式向代数式的转化等。 1.3化归方法遵循原则
数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 1.3.1熟悉化原则
熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。
4
例如,在学习有理数的四则运算时,我们知道有理数经过“+”“-”“×”“÷”运算后,所得结果仍是一个有理数,要确定一个有理数,只要确定它的绝对值和性质符号(即+,-号).因此有理数的四则运算都包含两个部分,即符号法则和绝对值.在确定了运算结果的符号以后,只要对绝对值进行运用,而有理数的绝对值就是小学里学习的算术数,这样就把有理数的运算化归为熟悉的算术数的运算。
例1 解方程 x4?2x3?24x2?80x?64?0
分析 可将方程的左端进行因式分解,化为熟悉的一元二次方程来求解。 x4?2x3?24x2?80x?64?(x4?2x3?x2)?(25x2?80x?64) =(x2?x)2?(5x?8)2 = (x2?6x?8)(x2?4x?8) 于是,原方程归结为 x2?6x?8?0或x2?4x?8?0 由第一个方程得 x1?2,x2?4
由第二个方程得 x3??2?23,x4??2?23
1.3.2简单化原则
简单化原则就是把比较复杂的问题转化为比较简单的易于确定解决方案的问题,从而使问题获解。中学数学受多年应试教育的影响,有些问题被复杂化了, 而学生对于这类问题却又相当头疼,所以通过化归,将问题变为比较简单的形式、关系结构,或者通过问题的简单化,获得解决复杂问题的思路,往往更容易让学生接受。
例如,在教学无理方程的解法时,由于无理方程的特征的根号里面含有未知数,有理方程相对无理方程来说比较简单,因此,解无理方程时,通常先通过两边平方或换元的方法使之化归为一个有理方程,然后通过解这个有理方程获得原方程的解。
例2 是否存在常熟k∈R,使函数f(x)=x4?(2?k)x2?(2?k)在(-∝,-1]上是减函数,且在[-1,0)上是增函数。
分析 如果设t=x2,则原来的函数转化为f(x)?h(t)?t2?(2?k)t?(2?k),那么问题就等价于是否存在常数k∈R,使函数h(t)?t2?(2?k)t?(2?k)在(0,1]上是减函数,且在[-1,0)上是增函数,这只需?2?k?1,故k=4.这里将四次函2数转化为二次函数,问题得解。 1.3.3具体化原则
具体化就是把比较抽象的问题转化为比较具体、直观的问题,以便形象地把握问题所涉及的各个对象之间的关系,使问题易于求解。新课程标准提出:数学
5