精品 WORD
考研数学三真题 一.选择题
1.若lim[?(?a)e]?1则a=
x?o1x1xxA0 B1 C2 D3
2.设y1,y2是一阶线性非齐次微分方程y??p(x)y?q(x)的两个特解,若常数?,?使
?y1??y2是该方程的解,?y1??y2是该方程对应的齐次方程的解,则
For personal use only in study and research; not for commercial use
1111,?? B???,??? 22222122C??,?? D??,??
3333A??3.设函数f(x),g(x)具有二阶导数,且g??(x)?0.若g(x0)?a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是
For personal use only in study and research; not for commercial use
Af?(a)?0 Bf?(a)?0 Cf??(a)?0 Df??(a)?0 4设f(x)?ln10x,g(x)?x,h(x)?e则当x充分大时有
x10Ag(x) For personal use only in study and research; not for commercial use Cf(x) ?,?s线性表示,下列命题正确的是: 5设向量组I:?1,?2,?,?r可由向量组II:?1,?2,A若向量组I线性无关,则r?s B若向量组I线性相关,则r>s For personal use only in study and research; not for commercial use C若向量组II线性无关,则r?s D若向量组II线性相关,则r>s 6.设A为4阶实对称矩阵,且A?A?0,若A的秩为3,则A相似于 2?1??1?????11????A? B ?1??1????????0?0????For personal use only in study and research; not for commercial use 精品 WORD ?1???1??????1?1????C? D ????1?1???????0?0?????0,x?0?17.设随机变量X的分布函数F(x)??,0?x?1,则P(X=1)= ?2?x?1?e,x?111?1?1A0 B C?e D1?e 228.For personal use only in study and research; not for commercial use 9. 10.设f1(x)为标准正态分布概率密度,f2(x)为[-1,3]上均匀分布的概率密度,若 ?af(x),x?0f(x)??1(a?0,b?0)为概率密度,则a,b满足: ?bf2(x),x?0A2a+3b=4 B3a+2b=4 Ca+b=1 Da+b=2 二.填空题 11.For personal use only in study and research; not for commercial use 12. 13.设可导函数y=y(x),由方程14.设位于曲线y??x?y0e?tdt??xsint2dt确定,则 02xdydxx?0?____________ 1x(1?lnx)2(e?x???)下方,x轴上方的无界区域为G,则G绕x 轴旋转一周所得空间区域的体积为____________ 315.设某商品的收益函数R(p),收益弹性为1?p,其中p为价格,且R(1)=1,则 R(p)=________________ 16.For personal use only in study and research; not for commercial use 17. 18.若曲线y?x?ax?bx?1有拐点(-1,0),则b=_____________ 19.设A,B为3阶矩阵,且A?3,B?2,A?B?2,则A?B 20.For personal use only in study and research; not for commercial use 21. 22.设 ?1?132?_________ 1n2X1,X2,?X3是来自总体N(?,?)(??0)的简单随机样本。记统计量T??Xi,ni?1 则ET?___________2 精品 WORD 三.解答题 23.求极限lim(x?1)x???1x1lnx 24.计算二重积分 23,其中D由曲线与直线x?1?y(x?y)dxdy??Dx?2y?0及x?2y?0围成。 25.求函数u=xy+2yz在约束条件x?y?z?10下的最大值和最小值。 26. (1)比较 222?10lnt?ln(1?t)?dt与?tnlntdt(n?1,2,?)的大小,说明理由。 0n1(2)记un?19.设 ?10lnt?ln(1?t)?dt(n?1,2,?),求极限limun. nn??f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 22f(0)??f(x)dx?f(2)?f(3) 0(1)证明:存在??(0,2),使f(?)?f(0); (2)证明:存在??(0,3),使f??(?)?0 20 11????a?????设A??0??10?,b??1?.已知线性方程组Ax?b存在2个不同的解。?1?1?1??????()求?、a..1 (2)求方程组Ax?b的通解。?0?14???T21.设A???13a?,正交矩阵Q使得QAQ为对角矩阵,若Q的第一列为 ?4a0???1(1,2,1)T,求a、Q. 622.设二维随机变量(X,Y)的概率密度为f(x,y)?Ae?2x求常数A及条件概率密度fYX(yx). 23.箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个。现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。 (1)求随机变量(X,Y)的概率分布; (2)求Cov(X,Y). 2?2xy?y2,???x???,???y???