【详解】
证明:∵四边形ABCD是菱形 ∴AB∥CD,AB=CD,∠ADF=∠CDF, ∵AB=CD,∠ADF=∠CDF,DF=DF ∴△ADF≌△CDF(SAS) ∴AF=CF, ∵AB∥CD,AE∥CF
∴∠ABE=∠CDF,∠AEF=∠CFE ∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD ∴△ABE≌△CDF(AAS) ∴AE=CF,且AE∥CF ∴四边形AECF是平行四边形 又∵AF=CF, ∴四边形AECF是菱形 【点睛】
本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.
4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°. (1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF; (2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2; (3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2. 【解析】
试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF; (2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=
DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出
EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到
△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°, ∵∠EAF=45°, ∴∠GAE=45°, 在△AGE与△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM. 则△ADF≌△ABG,DF=BG. 由(1)知△AEG≌△AEF, ∴EG=EF. ∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形, ∴CE=CF,BE=BM,NF=∴a﹣BE=a﹣DF, ∴BE=DF, ∴BE=BM=DF=BG, ∴∠BMG=45°, ∴∠GME=45°+45°=90°, ∴EG2=ME2+MG2, ∵EG=EF,MG=∴EF2=ME2+NF2;
BM=
DF=NF, DF,
(3)EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点, 将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.
由(1)知△AEH≌△AEF,
则由勾股定理有(GH+BE)2+BG2=EH2, 即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2, 即2(DF2+BE2)=EF2
考点:四边形综合题
5.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
【答案】(1)作图参见解析;(2)作图参见解析. 【解析】
试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.
试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;
(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:
考点:1.作图﹣应用与设计作图;2.勾股定理.
6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P. (1)连结CG,请判断四边形DBCG的形状,并说明理由; (2)若AE=BD,求∠EDF的度数.
【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°. 【解析】 【分析】
(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;
(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可. 【详解】
解:(1)四边形BCGD是矩形,理由如下, ∵四边形ABCD是平行四边形,
∴BC∥AD,即BC∥DG, 由折叠可知,BC=DG, ∴四边形BCGD是平行四边形, ∵AD⊥BD, ∴∠CBD=90°, ∴四边形BCGD是矩形;
(2)由折叠可知:EF垂直平分BD, ∴BD⊥EF,DP=BP, ∵AD⊥BD, ∴EF∥AD∥BC,
AEPD??1 BEBP∴AE=BE,
∴
∴DE是Rt△ADB斜边上的中线, ∴DE=AE=BE, ∵AE=BD, ∴DE=BD=BE, ∴△DBE是等边三角形, ∴∠EDB=∠DBE=60°, ∵AB∥DC,
∴∠DBC=∠DBE=60°, ∴∠EDF=120°. 【点睛】
本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度
7.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;