31. 0 32. 3?/2 33. (1,3) 34. 14 35. ? 36. 7/6 37. 32/3 38. 8a 39. 等腰直角 40. 4x+4y+10z-63=0 41. 3x-7y+5z-4=0 42. (1,-1,3) 43. y+5=0 44. x+3y=0
45. 9x-2y-2=0 46. e-1 47.2 48. 21/2 49. 7/6
50. 3x-7y+5z-4=0
三.解答题
1. 当X=1/5时,有最大值1/5
.
2. X=-3时,函数有最小值27 3. R=1/2
4. 在点(5. 7/6
2ln2,-)处曲率半径有最小值3×31/2/2
226. e+1/e-2 7. x-3y-2z=0
8. (x-4)/2=(y+1)/1=(z-3)/5 9. (-5/3,2/3,2/3) 10. 2(2-1) 11. 32/3 12. 4×2/3 13. 9/4
1/21/2
a22??2?14.(a-e)
415. e/2 16. 8a/3 17. 3л/10
2
18.
?a2?a2?2?2a?(e?e)? ?4?2?2
19. 160л 20. 2л ab
2
2
21.
166? 3.
22. 7л2
a3
23. 1+1/2㏑3/2 24.23-4/3
?3?25.89????5??2?1???2??
?26.yp2?y2py?p2?y22p?2lnp
27.
1?a2a?ae 28.ln3/2+5/12 29. 8a 30. 5×21/2
31. (0,1,-2) 32. 5a-11b+7c 33. 4x+4y+10z-63=0 34. y2
+z2=5x 35. x+y2
+z2
=9
36. x轴: 4x2-9(y2+z2)=36 37. x2
+y2
(1-x)2
=9 z=0 38. x2
+y2
+(1-x)2
≤9 z=0 39. 3x-7y+5z-4=0 40. 2x+9y-6z-121=0 41. x-3y-2z=0 42. x+y-3z-4=0
.
y轴:4(x2+z2)-9y2
=36
43.
133
x?4y?1z?3== 215x?3y?2z?145. ==
21?4y?2z?4x46. ==
31?244.
47. 8x-9y-22z-59=0 48. (-5/3,2/3,2/3)
49.
32 250. ??17x?31y?37z?117?0
4x?y?z?1?0?51. R=1/2 52. e+1/e-2 53. 4×2/3 54. 3л/10 四.证明题
1/2
1.证明不等式:2??1?11?x4dx?8 3证明:令f(x)?1?x4,x???1,1? 则f?(x)?4x321?x4?2x31?x4,
令f?(x)?0,得x=0 f(-1)=f(1)=2,f(0)=1 则1?f(x)?2
上式两边对x在??1,1?上积分,得不出右边要证的结果,因此必须对f(x)进行分析,显然有f(x)?1?x4?1?2x2?x4?(1?x2)2?1?x2,于是
.
?dx???111?11?xdx??(1?x2)dx,故
?1412??
1?11?x4dx?8 31dx?2.证明不等式??2?,(n?2)
201?xn6?1?证明:显然当x??0,?时,(n>2)有
?2?11111dxdx?1?????2??2?arcsinx2?
0201?xn1?xn1?x21?x206111dx?即,??2?,(n?2)
201?xn6
3.设f(x),g(x)区间??a,a?(a?0)上连续,g(x)为偶函数,且f(x)满足条件 f(x)?f(?x)?A(A为常数)。证明: 证明:
1?a?af(x)g(x)dx?A?g(x)dx
0aa?a?af(x)g(x)dx??f(x)g(x)dx??f(x)g(x)dx
?a00 ?
?0?af(x)g(x)dx令x?u??f(?u)g(?u)du??f(?x)g(x)dx
a00a??f(x)g(x)dx??f(?x)g(x)dx??f(x)g(x)dx???f(x)?f(?x)?g(x)dx?A?g(x)dx?a0000aaaaa
14.设n为正整数,证明?2cosxsinxdx?n02nn???20cosnxdx
证明:令t=2x,有
?
?20cosxsinxdx?nn12n?1??20(sin2x)nd2x?12n?1??0sinntdt
???1?2nn?, sintdt?sintdt ?n?1??????02?2?.